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Abstract

Wildlife trafficking, a focus of organized transnational crime syndicates, is a threat to biodiversity. Such crime
networks span beyond protected areas holding strongholds of species of interest such as African rhinos. Such
networks extend over several countries and hence beyond the jurisdiction of any one law enforcement authority.
We show how a federated database can overcome disjoint information kept in different databases. We also show
how social network analyses can provide law enforcers with targeted responses that maximally disrupt a criminal
network. We introduce an actionable intelligence report using social network measures that identifies key players
and predicts player succession. Using a rhino case study we illustrate how such a report can be used to optimize
enforcement operations.
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Introduction
Wildlife trafficking is a key threat to biodiversity [1] and
often associates with illicit arms deals [2], trafficking of
people [3] and drug smuggling [4]. Recent links to
terrorism [5] and well known links to conflict zones [6]
serve to highlight the degradation of human society
caused by illegal wildlife dealers.
Illegal trading in wildlife products is attractive to crim-

inals because of the potential financial gains with relative
little costs or risks [7]. Wildlife commodity prices de-
pend on economic processes such as demand and supply
[8]. Rare species by nature will have high value of associ-
ated commodities, sometimes accentuated by international
trade-bans imposed by CITES [9].
Managing the threat associated with wildlife trafficking

to biodiversity and human society alike collapses to three
strategic actions [10]. First, protect wildlife assets through
anti-poaching largely funded by non-government organi-
zations trading in extinction anxiety as a commodity [11].
Protecting wildlife may ultimately resort to aggressive
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tactics such as shoot-on-sight policies [12]. The second as-
sociates with demand reduction strategies [13] also funded
by the extinction anxiety trade. The final action associates
with providing the desired commodity [14], usually in the
form of a legal trade (e.g. [15,16]) that often elicits conten-
tious debate and response inertia [9].
The nature of transnational crime syndicates [17] how-

ever, influences all three strategic actions. Poachers con-
flict with anti-poaching units; end-user suppliers come in
conflict with demand reductionists particularly if cam-
paigns are culturally insensitive; and syndicate supply
chains compete with potential legal suppliers. For in-
stance, when suppliers like transnational crime syndicates,
have lower costs compared to legal producers and sup-
pliers, imperfect economic competition results [7,18]. This
nearly always leads to illegal suppliers outcompeting legal
ones [19]. The disruption and even collapse of trans-
national crime may thus serve a key strategic contribution
to the success of any of the potential actions available.
This realization increasingly imposes a need of know-

ledge on wildlife managers required to participate in the
policing of wildlife crimes [20]. Wildlife trafficking crim-
inal networks typically organize themselves into a hier-
archical structure supporting the three basic tiers of a
is is an Open Access article distributed under the terms of the Creative
mmons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
inal work is properly credited.

mailto:haas@uwm.edu
http://creativecommons.org/licenses/by/4.0


Haas and Ferreira Security Informatics  (2015) 4:2 Page 2 of 14
normal economic process linking supply and demand
(e.g. [21]) – producers (e.g. poachers and associated middle
men or organizers), supply chains (e.g. shipping routes
facilitated by exporters) and consumer retailers (e.g.
sellers in markets supplying end-users).
Wildlife trafficking criminal networks often extend over

several countries [22]. Transnational criminal network
players and operations thus extend beyond the jurisdiction
of a single law enforcement authority. Investigators within
different jurisdictions need evidence gathered by investiga-
tors in other jurisdictions to define the full extent of a net-
work’s operations. In addition, investigators need to identify
the roles particular players have in a transnational criminal
network. Removing important role players destabilizes the
resilience of wildlife crime networks [23] and may ultim-
ately collapse the entire illegal supply chain.
Two particular challenges arise. First, the lack of trust,

and absence of a secure, common and user-friendly proto-
col for transferring criminal intelligence data between
jurisdictions can impede the sharing of evidence between
investigators of different jurisdictions. We illustrate the
use of a federated database approach [24] to address this
challenge.
The second challenge associates with targeted responses

that could have maximum disruptive effect on a crime net-
work [25]. Authorities seldom have resources to investigate
and target all players in large and complex transnational
criminal networks [17-22]. They simply cannot arrest
everybody. Law enforcers, however, can use evidence con-
tained in a federated criminal intelligence database to derive
actionable intelligence [26] on targeted individuals directed
at providing law enforcement responses that disrupt the
criminal network’s operations.
We propose a specific step-by-step program that a

heterogeneous group of law enforcement and wildlife
conservation agencies should follow to create actionable
intelligence. These steps are:

1. Invite into the group agencies whose jurisdiction
contains suspected elements of a wildlife trafficking
operation.

2. Invite all group members to collectively form and
maintain a federated database of all criminal
evidence items that each federation member collects
within their respective jurisdictions.

3. Employ either a within-federation specialist or an
outside consultant to perform social network analysis
on queries from the federated database and prepare
from those analyses actionable intelligence reports to
be shared with all federation members.

To walk the reader through this program, the remain-
der of this article is structured as follows. First, we
describe how such a group of agencies should form a
federated database of all wildlife trafficker evidence items
that they collect. Next, we illustrate the application of social
network analyses [27] that make use of several forms of
communication links between players in the federated
database to identify key players and arrest sequences as an
example of actionable intelligence. Then, we illustrate the
creation of actionable intelligence through a case study on
curbing rhino poaching in Kruger National Park, a strong-
hold for two rhino species threatened by illegal wildlife traf-
ficking [14,28]. We reach conclusions in our final section.

Contextual setting
Wildlife trafficking syndicates have common generalized
structures [17-22]. Within the illegal supply network, a
first-tier intermediary (i.e. a receiver or courier) commis-
sions a poaching hunting party and buys whatever wild-
life commodities the party is able to poach [29]. Second-
tier intermediaries (i.e. buyers) buy wildlife products
from first-tier intermediaries and sell it to third-tier
intermediaries (i.e. exporters). Exporters are the links in
the supply chain connecting producers with consumers
in end-user countries. Several intermediary tiers of ven-
dors can also exist. For this article, we focus on a net-
work composed of middlemen and the poaching parties
that they sponsor – it’s the basis of the supply part of a
wildlife trafficking criminal network and contains four
groups. Any member within any such group belonging
to the network is referred to as a player.

Federated databases
Players at higher tiers in the network receive wildlife
commodities from several different sub-networks of
poachers and lower-tiered intermediaries [29]. Crime
intelligence seldom originates from a single source
[30,31] and hence also rarely does a single database
capture all information. Combining data on these sub-
networks into one database can reveal increasingly
higher-tiered players (typically those in control of funds
and with export capabilities), and the true extent of the
wildlife trafficking network [17-22]. On the other hand,
if investigators analyze sub-networks in isolation from
each other, they may miss-identify high-level players as
peripheral players. High-level players, for instance, often
communicate with only a few members of a particular
sub-network increasing the risk of pseudo-peripheral
identification [32]. Accentuated risk arises when high-
level players dictate poaching raids in widely geographic-
ally separated parts of a wildlife-hosting region. The use
of a federated database allows investigators to discover
long-distance links.
In this context a federated database [24] comprises the

development of a virtual database of all evidence gath-
ered on persons suspected of participating in wildlife
trafficking (Table 1). This database holds data from



Table 1 Procedural steps required to establish a
federated database

Step Procedure

1 Separate investigation groups agree to a federated database
approach to share information and become a federation
member.

2 All federation members agree to include in their constituent
databases a common core of attribute fields with agreed-upon
names.

3 Each federation member creates a secure, local database that
conforms to the Structured Query Language (SQL) for all
evidence items that they directly collect using compatible
software that constructs and processes this database i.e. the
database engine.

4 Each federation member acquires a criminal intelligence software
system. Commercial systems include Analyst's Notebook [37].
One free system is id [60]. Pajek, a free social network analysis
program, can compute some measures typically used in the
analysis of criminal networks [52].

5 Each federation member modifies its criminal intelligence
software system so that it can read input from a report file
generated by the local database engine.

6 Each federation member adopts a policy in which any new
evidence collected is entered only once and only into the local
database.
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several investigation groups who may work within
national parks, provincial governments, or national gov-
ernments. The approach allows different investigation
groups, or federation members, to share a virtual single
database of wildlife trafficking criminals.

Implementing a federated database
Implementation requires investigators to run a query
against a federated database composed of all evidence
collectively held by all cooperating federation members.
Typically, a federation member (the requestor) sends an
email with a Structured Query Language (SQL), (see
Appendix 1) query in it to each federation member.
Upon receipt of an email query, a federation member
may choose to ignore the query due to lack of trust in
the requestor. Alternatively, the federation member may
decide to run the query against their local database and
send the query’s result back to the requestor as an
encrypted file attached to an email. Several free utilities
are available on the web that encrypt files using a shared
key (e.g. AxCrypt [33]). Federation members share this
key amongst themselves by physically meeting at a
central location and sharing a common key string.
The requestor collects all received query responses

into a single data file. All of these different, local data-
bases taken together thus form a single, virtual database
against which an investigator may run a query. This is
particularly advantageous because when data change fre-
quently, executing queries against member databases is
more efficient and cost effective than first building a
master database before querying it [34].
The requestor then applies criminal social network ana-

lyses [35] to this single data file to produce actionable
intelligence that can inform tactical responses directed at
disrupting wildlife crimes. Investigators may automate
parts of this process such as receiving the incoming query
request email, running the query against the local data-
base, and generating the outgoing email message contain-
ing the query’s results [36]. This approach removes
exposure risks of any federation member’s local database,
and does not need specialized software.
Alternatives to the zero-cost implementation highlighted

above include a low-cost implementation. In this case
each federation member purchases MS Office. This soft-
ware bundle contains the database engine, MS Access.
Database managers construct and maintain the local data-
base in MS Access. The approach carries two advantages:
dedicated support from Microsoft Corporation, and the
availability of several online forums due to its large user
base.
A more expensive implementation allows federation

members to achieve secure transmissions without
having to encrypt/decrypt individual files by jointly pur-
chasing a Virtual Private Network (VPN). Several web-
based database systems may offer greater opportunities
for data integration such as a solution based on a set of
distributed MS SQL Servers. These solutions however,
are more expensive and require each federation member
to have access to strong Information Technology (IT)
support.

De-identifying data
Although federated databases allow enrichment of the
database available to generate actionable intelligence,
commercial criminal intelligence software systems may not
provide the necessary analysis options to achieve that.
Often investigators require specialist analyses of a
particular body of evidence. This specialist may not be
on the staff of one of the federation members. This in-
troduces considerable risks associated with information
confidentiality.
A data file, sent to an outside specialist should thus not

contain any classified, private or confidential information.
De-identifying or de-classifying the database requires
replacing classified, private or confidential information in
a database with encrypted or random identifiers. Some
commercial software systems (e.g. Analyst’s Notebook
[37]) contain de-classifying options within their report
creation capabilities.
If the criminal network changes frequently, specialist

analysts may need to run actionable intelligence analyses
every week. Automatic de-identification facilitates this
process. Within the use of a federated database approach,
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the specialist analyst needs the encryption algorithm to
create a unique codename for each unique player name
regardless of the local database that the algorithm is
run on.
To address these requirements, the specialist analyst

provides a SQL query script to each federation member.
This script, when run against a federation member’s
local database, de-identifies each suspect’s name by
replacing the name with an encrypted name (hereafter
called a codename). Because all federation members use
the same encryption key, persons without the key (such
as an outside specialist) cannot decrypt codenames back
to the original names.
We use an example to illustrate the process. A query

script asks for (a) each pair of players that are linked
through an intercepted phone call, (b) how many phones,
and/or cars, and/or guns each player has, and (c) for each
pair of players, the number of evidence items that men-
tion both of them. Each federation member creates an
email message containing this de-identified data file and
sends it to the outside specialist for creation of actionable
intelligence. Upon receipt of all data files from cooperat-
ing federation members, the outside specialist aggregates
information into one file, analyzes the aggregated network,
and then shares the created actionable intelligence with all
federation members.

Data aggregation issues
A common encryption key across all federation member
databases will result in a unique codename for a unique
player as long as that player’s name is spelled exactly the
same in each federation member’s database. But, this
cannot always be assumed in practice. To address this
and other concerns pertaining to the combination of
data from different federation member databases, feder-
ation members agree on a common core of attributes
and their names, e.g. suspect name, suspect address,
suspect contact number 1, …, suspect contact number 10.
Next, the specialist eliminates duplicate records caused
by spelling differences of a suspect’s name across the
databases of the federation with an algorithm given by
[38] that operates on the address and primary phone
number fields only. Note that the suspect’s name can-
not be used here because the process of name encryp-
tion cannot be relied upon to be a monotonic mapping
of distances between names in the original name space
to distances between names in the encrypted space.
See Appendix 1 for an implementation of the algorithm
in [38].
Finally, the agreement among the federation members

to use a common core of database attributes eliminates
the need to disambiguate attribute fields that could arise
from so-called schema heterogeneity (see [39]).
Creating actionable intelligence
Actionable intelligence is the fundamental ingredient of
Intelligence-Led Policing (ILP) [31]. Such analysis should
inform policing, from tactical to strategic levels and
beyond to government policy. It serves as a model that
uses intelligence to guide and shape policy, strategy and
operations, rather than simply solving or supporting
singular investigations [40].

Criminal network resilience
The appearance of organized transnational crime net-
works [17-22] stimulated the development and applica-
tions of network analytical approaches as part of
developing actionable intelligence [31]. Strategically, law
enforcement authorities seek the most cost effective
action to disrupt or collapse a crime network.
Typically, crime networks carry trade-offs between

efficiency and security that reflects in the architecture of a
criminal network – a sparsely connected network is more
secure, but less efficient [41]. A terrorist network would
thus place a higher priority on security than a criminal en-
terprise such as a wildlife trafficking network. This predicts
that a wildlife trafficking network will strive to raise its effi-
ciency (connectedness) after a network disruption action
rather than increase its security by remaining sparsely con-
nected. This creates opportunities as well as challenges –
networks may recover quickly following a disruptive legal
action [23], but at the same time such responses allow op-
portunities to obtain more information when hidden net-
work players come to the fore in the process [42].
Targeting efficiency or connectedness of wildlife traf-

ficking networks is a high priority for law enforcement
authorities. Three challenges arise. First, how often
should law enforcers disrupt a network? Which network
player should authorities target? How would a network
recover if disrupted? The last question typically provides
law enforcement guidance to task investigators to focus
on key future suspects. Social network analytical ap-
proaches [35] provide ways to address these questions.

Social network analysis
Criminal networks have key players [35] identified
through social network analytical metrics [43,44]. Eigen-
vector centrality helps to identify the most connected
intermediary, while the betweenness centrality measure
indicates the intermediary with the most control over
information. Removing these two players would be the
most effective strategy for disrupting the network’s oper-
ations. In addition, the brokerage score flags influential
players (Table 2).
To help in interpreting measures, we provide some net-

work notation. Let G = (V, E) be a graph where V is a list of
its g vertices (players), and E is a list of its edges or links
(the graph’s connectivity). Label vertices with vi, i = 1, . . ., g.



Table 2 Social network analysis metrics that allow the identification of key players in wildlife trafficking networks

Metric Description

Degree centrality The number of links directly connected to that player

Betweenness centrality vi is defined as follows. Consider the jth pair of players (v′, v′′)j for which v′ ̸ = vi and v′′ ̸ = vi . Let Tj be the number of
shortest paths between v′ and v′′ . Let nj be the number of these paths that contain player i. The betweenness

centrality of vi is
Xm
j¼1

nj
T j

where m is the number of player-pairs that connect by at least one path [35]. The measure

incorporates by re-defining the length of a path between players vi and vj to be the sum of the link weight inverses
across all of the links in the path [44]. A player with high betweenness centrality has control of information propagation
in a network

Eigenvector centrality Let W be the weighted-link adjacency matrix. Let e be the first eigenvector of W. The eigenvector centrality of player
vi is the ith component of e [35]. This metric measures a player’s influence by measuring how easily information can
flow between a player and all other players regardless of the path taken [43]

Network connectedness The largest eigenvalue of W. Let CI be this index

Gould-Fernandez total
brokerage score

The GF total brokerage score for vi is the number of player pairs, v’, v” for which (v’, vi) and (vi, v”) are both in E but
the link (v’, v’) is not in E [35]. A player with a high brokerage score functions as an intermediary (or broker) for many
pairs of players not directly connected to each other
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Denote an undirected edge with {vi, vj}, and a directed
edge where vi influences vj with (vi, vj). Let A be the graph’s
adjacency matrix. The i, jth component of A, ai,j is set to
the value 1.0 if the corresponding edge is in E, and 0,
otherwise. Thus, A is a square, g × g matrix.
Because first-tier intermediaries sponsor a poaching

party, there is some justification for modeling the rela-
tionships between players with directed edges. In this
case, betweenness centrality (Table 2) and proximity
prestige score [32] would be the most relevant measures
to use to identify key players.
Law enforcers can use social network analysis to help

combat wildlife trafficking crimes by reconstructing
the trafficking network from data on messages passed
between players, followed by the identification of key
players (Table 3). Law enforcement can then focus legal
actions on these key players to disrupt the network’s
operations based on the actionable intelligence report
that analysts provide (Figure 1).

Link weights
A key challenge arises in that different qualities of informa-
tion comprise a criminal information database. Typically in-
formation needs verification to become intelligence. Crime
Table 3 Actionable intelligence products provided through so

Product

List of players who have high network centrality values

Recommended sequence of players to remove

Prediction of players most likely to succeed removed players

Prediction of influential players who are attempting to conceal themselves

Predictions of rising stars

Network resilience index value

We also provide examples of response actions.
database managers scale information based on reliability of
the source and verification thereof. Intelligence that link
players in social network analyses is thus of varying signifi-
cance. In addition, a pair of players may be referenced on
several pieces of evidence collected by investigators. For
example, a mobile phone number that associates with both
players (Table 4).
We capture this differential intelligence quality chal-

lenge by creating link weights. Information on player
attributes is often available, but seldom incorporated to
establish link weights [45]. For the player pair vi, vj, let
bij be the number of these evidence items. Let bmax be
the largest of these values across all player pairs in the
network. In our rhino horn trafficking example, informa-
tion on the numbers of mobile phones, vehicles, and
guns owned by a player is available. Let ci, and di be the
number of mobile phones, and vehicles, respectively
owned by player vi. Let cmax =max {c1, . . ., cg}. Define
dmax similarly. Steinhaeuser & Chawla [45] add the value
1 − α|vali − valj | to the weight of the existing link be-
tween players vi and vj where vali is the attribute value
of player vi, and α is a normalizing constant. The index
notates the higher the attribute similarity, the higher
the weight. One way to combine all three of these
cial network analysis of information

Action

Remove all of these players from the network

Remove these players in the recommended order

Increase surveillance on potential successors

Increase surveillance on these players as they are often
highly influential and the sole connection to other networks

Increase surveillance on these increasingly influential players

Increase frequency of removals if this index is high



Actionable Intelligence
27 February 2014

1. INTELLIGENCE: Key Players
Eigen Vector Centrality Betweenness Centrality

Player Group Player Group
N4 Intermediary N22 Intermediary
N35 Intermediary N3 Intermediary
N6 Intermediary N40 Intermediary
N19 Intermediary N41 Intermediary
N39 Poacher N5 Intermediary

ACTION: Arrest all ten of these players

2. INTELLIGENCE: Sequence of arrests
Highest eigenvector centrality – N4
Group - Intermediary

Highest betweenness centrality – N22
Group - Intermediary

ACTION: Arrest N4 first then N22

3. INTELLIGENCE: Succession predictions 
N7 is predicted to succeed N4 N15 is predicted to succeed N22

ACTION: Increase surveillance on N7 and N15

4. INTELLIGENCE: Rising stars
Highest ratio of betweenness to degree centrality – N31
Group – Intermediary 

ACTION: Increase surveillance, particularly communication means of N31

5. INTELLIGENCE: Future influential players
N19 is a rising star
Group - Intermediary

N40 is a rising star
Group - Poacher

ACTION: Increase surveillance on N19 and N40

6. INTELLIGENCE: Network Resilience
Resiliency index is 10.9

ACTION: Increase the frequency of arrests because the network at present is able to recover quickly from arrests.

7. INTELLIGENCE: Missing links
Player N29 has a 67% chance of linking with player N31 Player N13 has a 58% chance of linking with player N17

ACTION: Increase surveillance on players N29, N31, N31 and N17 

8. INTELLIGENCE: Spurious links
The link between player N1 and N42 is 73% unlikely.

ACTION: Increase surveillance on players N1 and N42

Figure 1 Example of an actionable intelligence report. The example illustrates a report generated for law enforcement authorities. Players
have internal identification numbers that remove risks when investigators use external specialist analysts. Note that predicted group membership
plays a role in actions responding to actionable intelligence items 2 and 4.

Table 4 Examples of data types and sources connecting
players in a criminal network investigated by law
enforcement authorities

Sender Recipient Message/Action type Data source

A D Conversation Cellphone intercept

B D Payment Field evidence/confession

C D Conversation Cellphone intercept

D E Conversation Cellphone intercept

E G Conversation Cellphone intercept

F G Conversation Interrogation

G H Conversation Cellphone intercept

H I Conversation Cellphone intercept

I J Conversation Cellphone intercept
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contributions to a link’s weight is as follows. For players
vi and vj, let

wij≡2þ bij
bmax

−
ci−cj
�� ��
2cmax

−
di−dj

�� ��
2dmax

if bij > 0. Otherwise, set wij to zero (no link). A set of
players in the network will hold the value cmax. Therefore,
this value will force the third term of the wij definition to
take on values between 0 and 0.5 for all player-pairs in the
network. If a pair of players have similar values of ci this
third term will be close to zero – resulting in a small pen-
alty for dissimilar ci values. On the other hand, for a pair
of players for which one holds the value cmax and the
other holds the value zero, the penalty will take on its
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maximum value of 0.5. This explanation applies to the
fourth term as well. If the pair of players have the same ci
values and the same di values, their link weight will be
between 2.0 and 3.0. At the other extreme, when bmax is
large, use of this definition yields a link weight of about
1.0 for a player-pair that have been linked through a single
evidence item and who have maximally different quan-
tities of phones and vehicles.
This approach assumes a relationship between node

attributes and a link’s weight: high attribute similarity
translates to high weight. If this relationship is unknown,
the stochastic blockmodel [46] may be extended by adding
attribute affinity matrices [47]. The entries in these matri-
ces are model parameters and hence need estimation.

Dynamic social networks
Responses of networks to law enforcement actions
require some understanding of how criminal networks
may recover [48]. Investigators require a dynamic
model of the criminal network, which helps to define
an arrest sequence and the network resiliency index.
Yuan et al. [49] use a sequence of networks across
discrete time, G(iΔt), i = 1, . . ., where Δt is the discrete
time step. Communication events observed between
players after time i × Δt, but before time (i + 1) ×Δt are
taken to be links in the network, G(iΔt). The value of
Δt is set to a value large enough so that for each i, the
sample used to reconstruct G(iΔt) contains at least one
communication event to or from each player active in
that network. Let C Ii be the connectedness index value
of network G(iΔt).

Network disruption
Frequency of disruptive actions
Wildlife trafficking criminal networks are typically
resilient – they are able to quickly reform themselves
after a network disruption action [23]. Computing an
index of resilience (e.g. RI - the inverse of the number of
weeks to regain 90% functionality after a disruptive ac-
tion) could help law enforcement units to adjust the fre-
quency of their network disruption efforts to maximize
crime disruption. One measure of a network’s functional-
ity is its overall connectedness – and one measure of that
is CI, the largest eigenvalue of the matrix of link weights,
W. In addition to tracking the network’s resilience meas-
ure, by following changes in CI, law enforcement agencies
can assess the degree to which their network disruption
actions have affected network functionality.

Optimal sequence of arrests and rising stars
Yuan et al. [49] recommend two procedures for deciding
the next arrest. We apply these recommendations using
social network centrality measures in two ways. First, if
a player’s eigenvector centrality (Table 2) is increasing
through time, law enforcement should arrest this player
first because the player may be the next rising star.
Second, if a player’s betweenness centrality (Table 2) is
increasing through time, law enforcement should arrest
the player last if it is important for investigators to not
alert other players in the network.
An additional network disruption action is to remove

players with high ratios of betweenness centrality to de-
gree centrality [50]. The reason for this guideline is that
such players may actually be running the criminal oper-
ation while trying to remain inconspicuous. Therefore,
they should be removed immediately even if their high
ratio of betweenness to degree centrality is due to a high
betweenness centrality value – contradicting the above
recommendation of removing players with high be-
tweenness centrality last.
These guidelines should only be applied to influential

players in the network.

Succession
Which player is most likely to take up the role that an
arrested player had in a network? Such a player should be
the recipient of increased surveillance. Typically, network
dynamics predict that when a player is lost, surrounding
players quickly establish new connections and share
responsibilities of the lost member [51]. Hence, one way
to predict who will take up an arrested player’s role is to
identify the player that is closest to the removed player
along three dimensions: 1) path length between the player
and the removed player, 2) eigenvector centrality, and 3)
betweenness centrality. An investigator could test this pre-
diction by re-computing the network’s centrality measures
after a period has passed since the arrest.
The authors’ id software system predicts who these

people will be by first finding the player directly con-
nected to the first (to be) arrested player who has the
most similar eigenvector centrality. This player is pre-
dicted to succeed the first arrested player. In a similar
manner, the player directly connected to the second
arrested player who has the most similar betweenness
centrality value to that of the arrested player is predicted
to succeed the second arrested player.

Criminal network inference
Types of data used to observe the network
Investigators use several types of data to determine the
groups that players belong to as well as how players link
to each other. These include names mentioned while in-
terrogating a poaching suspect, interceptions of mobile
phone conversations, evidence gathered at the scene of a
poaching incident and informant reports. These provide
a data set composed of observations between pairs of
players or links. In such a data set, some links may be
unobserved, and some observed links might be spurious.
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Often, observed communication events are between
pairs of players whose identities are unknown. For such
data, analysts assign to both players identifier labels (e.g.
Table 4). Link software packages such as Pajek [52], (see
Appendix 3) can draw the network formed from this
data (Figure 2a).

Types of inference
To overcome hidden or spurious links in observed net-
works, some network inference may assist investigators
to reconstruct a crime network. At least three network
A

B

C

D

E

(a)

A

E

I

J

(b)

Figure 2 Construction of criminal networks from link data. a. Observe
identifying missing and/or spurious links between players (node colors ind
software package, Pajek [52].
inference tasks arise [53]. The first is to assign the name
of a player to each identifier label in the data set – entity
resolution. Next is to predict the set of edges in the true
network – link prediction. Finally, the analyst predicts
the role of each player in the network – collective classi-
fication. We focus on two approaches that allow analysts
to reconstruct a network from an incomplete data set on
pairs of linked players. The graph-based approach [54]
employs only basic graph-theoretic measures to predict
the presence of a link and does not attempt to model
the network in any way. The model-based approach [46]
F

G

H

I

J

Pajek

B

C

D
F

G

H

Pajek

d links. b. Network inference results using model-based predictions
icate group membership predictions). Graphs are drawn with the
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assumes the network was generated by a probabilistic
function. Under this assumption, analysts use the data to
first estimate the model’s parameters, and then to pre-
dict link presence or absence from this fitted model.

Graph-based link prediction and network reconstruction
For large networks, a statistical estimate of the network’s
parameters may be too time- consuming to compute on
typical desktop computers. In these cases, analysts may
employ a graph-based approach. If the network has
many unobserved links, a graph-based link predictor
should not depend on having information at both ends
of a potential link. Rather, it is better to be robust to loss
of information at either of the two ends of a potential
link [54].
Based on these comments, we evaluated the use of

both Common Friends (CF) and Total Friends (TF) in a
method to score potential links as follows. Let Γ(v) be
the set of players that are directly connected to player v.
Note that player v’s degree centrality is |Γ(v)|. Hence,
degree centrality can be interpreted as the number of
friends that player v has, i.e., the number of players that
are directly connected to player v. The CF and TF scoring
functions are

scoreCF v; v′
� � ¼ Γ vð Þ ∩ Γ v′

� ��� ��;
and

scoreTF v; v′
� � ¼ Γ vð Þ ∪ Γ v′

� ��� ��:
The CF score is the number of players that are directly

connected to both of the players, v and v’ – while the TF
score is simply the total number of unique friends
enjoyed by both of these players. To make link predic-
tions, the analyst computes these scores for each pair of
players not linked in the observed data. A predicted link
for a pair of players results if their CF score is larger
than the 90% quantile of the CF scores computed on all
observed link pairs, or the TF score is larger than
99.99% quantile of the TF scores computed on all
observed link pairs. This graph-based link prediction
algorithm is computationally inexpensive allowing it to
be applied to networks of any size.
Predicting group membership using a graph-based ap-

proach makes use of conditional statements (e.g. for the
case study below, If a player has only one link into the
network, assign that player to group 1 (poachers). Other-
wise, assign the player to group 2 (intermediaries)).

Model-based link prediction and network reconstruction
We introduce a frequentist (non-Bayesian) method for
model-based link prediction from link data in which (a)
there may be unobserved links, and (b) an observed link
is reliable, i.e., there are no observed links that are
spurious. This method assumes the true network is sto-
chastic in its links and group membership. We model
this random network as a stochastic blockmodel.
Let Yij be a Bernoulli random variable that, when hold-

ing the value 1, indicates the presence of a link between
player i and player j. Let Xi be an m-valued discrete
random variable that indicates the group that player i
belongs to. The parameters of this random variable are
θ1, . . ., θm : P (Xi = k) = θk. Within the stochastic block-
model, P (Yij = 1) = ηXi,Xj. In other words, the probability
of a link between players i and j is a function of only the
group memberships of the two players.
Snijders & Nowicki [46] give the joint probability of

the stacked random vector

Y′; X′
� �′

:

P Y ¼ y; X ¼ x; θ; ηð Þ ¼
Ym
i¼1

θnii

" # Y
1≤k≤l≤m

ηeklkl 1−ηkl
� �nkl−ekl

where nk denotes the number of players that belong to
group k, and ekl denotes the number of links that are
between a player in group k and a player in group. The
count

nkl ¼ nknlI k≠lf g k; lð Þ þ nk
2ð ÞI k¼lf g k; lð Þ:

Let yo be the set of links that are observed to be either
“on,” or “off”. An investigator may suspect that censored
potential links exist between certain players, i.e., because
present data do not allow observation of these potential
links, it is unknown if they exist or not. Such censoring
may occur because the investigator believes these players
are using a method of communication not monitored by
law enforcement. In other words, all that the investigator
is sure of are the person-to-person communication
events already observed. The vector yc capture the unob-
served potential links. Let nc be the number of these un-
observed potential links. The likelihood function comes
from summing the joint probability over all possible
values of the unobserved random vector X, and the
unobserved links, Yc giving:

P Yo ¼ yo; θ; ηð Þ ¼
X

x∈ 1;2f gg ;yc∈ 0;1f gnc
P Y ¼ y;X ¼ x; θ;ηð Þ

By maximizing this equation we estimate parameters
given the data over all possible values of θ and η (see
Appendix 2 for further details). Using these estimated
parameter values, we reconstruct the trafficking network
by simulating the conditional expected values of Y and
X given the data, yo. This simulation proceeds by ran-
domly drawing many networks from the estimated
model and retaining only those networks for which Yo =



Table 5 Predicted group membership and centrality
scores of players derived from a reconstructed network

Player Predicted
group

Eigenvector
centrality

Betweenness
centrality

GF total
brokerage

D 1 0.478 0.431 14

G 1 0.442 0.208 9

H 1 0.411 0.178 3

E 2 0.411 0.178 3

I 1 0.255 0.222 2

C 2 0.228 0.011 1

B 2 0.228 0.011 1

F 1 0.228 0.011 1

A 2 0.118 0.0 0

J 1 0.065 0.0 0

We order players by their eigenvector centrality value. Removal of players D, G
and I should seriously disrupt the network’s operations. Members of Group 1
are first-tier intermediaries having more influence than those of Group 2.
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yo. Link ij is predicted to exist if the average value of Yij
over these retained networks is greater than 0.5. Player i
is predicted to belong to group k if k is the closest inte-
ger to the average of the Xi values over these retained
networks. The reconstructed network then, is the condi-
tional expected network under the estimated stochastic
blockmodel given the set of observed links. This simula-
tion procedure is not trivial because each player does
not necessarily keep membership in the same group
from simulated network to simulated network. Note that
under this frequentist approach to network reconstruc-
tion, we interpret the data to be a (possibly censored)
realization from the stochastic network defined by the
joint probability law given above.
As an example, we reconstruct the network from the

data set of Table 4 with the above statistical method to
produce a reconstructed network (Figure 2b). Table 5
collects centrality measures of the reconstructed net-
work and delivers an optimal removal strategy based on
this social network analysis.

Spurious and missing links
Investigators can identify spurious links through a non-
Bayesian approach with a measurement model. Let X be
the Bernoulli random variable representing the true po-
tential link, and Y be the observable potential link. Let
γ ≡ P (Y = 1|X = 0) be the probability of observing a
spurious link. If for example γ ≈ 0.01 there is little
chance that a reported link is spurious. An alternative
Bayesian approach due to Guimerà & Sales-Pardo [55]
allows the estimation of the edge set of a network from
noisy and incomplete data that is resistant to the effects
of missing and/or spurious edges in the observed net-
work. Use of either approach allows the identification of
potential missing and/or spurious links to inform the
actionable intelligence report that is provided to law
enforcement authorities (Figure 1).

Case study: Rhino poaching
Kruger National Park, South Africa, is a stronghold of
two sub-species of rhino, the southern white rhino
(Ceratotherium simum simum) and the south-eastern
black rhino (Diceros bicornis minor). In Kruger, both
these species suffer a new poaching onslaught for their
prized horns [56]. Despite intensified anti-poaching ac-
tivities, the number of rhinos poached per day continued
to increase since 2008 (Department of Environmental
Affairs (DEA) South Africa, unpublished data). Although
the outcome of such a poaching threat is not detectable
at the population level in Kruger National Park for both
black [28] and white rhino [14], continued trends in
poaching predicts detectable declines by 2016.
Poaching compromises at least two conservation values:

the opportunity to contribute to rhino range expansion
programmes [57] as well as generating revenue from rhino
sales [14]. An integrated framework [10] aims to manipu-
late demand and supply dynamics associated with the use
of rhino horn and in the process alter the incentives and
disincentives within the decision making of poachers [58].
The disruption of transnational organized crime syndi-
cates is thus a key element that influences various aspects
of the proposed integrated framework [10].
We used real-world network data on a rhino horn traf-

ficking network operating close to Kruger National Park.
The example comprises a 134-player network defined by
data collected during September 2013. We used a modi-
fied form of the ForceAtlas2 graph-drawing algorithm
[59] implemented in the id software system to illustrate
a re-constructed network (Figure 3). The ForceAtlas2
algorithm reveals clusters of players and the connections
between these clusters. We also used the id software
system to produce an Actionable Intelligence Report for
the end of September 2013 (Figure 4). Note that the net-
work reconstruction algorithm added several links (see
Figure 3). Player H100’s high eigenvector centrality is il-
lustrated in the graph: this person is able to transfer infor-
mation in parallel across chains of other players rather
than having to channel his/her information through one
neighbor at a time, i.e. he/she is a player that can commu-
nicate with most other players through a multiplicity of
short walks [35] and hence can propagate information
quickly to many players in the network. Player H28 stands
as a gatekeeper between large numbers of players distributed
across widely dispersed sub-networks. Removing player
H100 will damage the network’s leadership, and remov-
ing player H28 will damage the operation’s ability to
communicate a message to all members of the network.
Note that player H100 possesses both high eigenvector
and high betweenness centrality.
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Figure 3 An example of the reconstructed criminal network associated with rhino poaching in Kruger National Park as of September
2013. Heavy lines indicate links added during network reconstruction.
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The network is composed of several loosely-connected
sub-networks. Each of these sub-networks consists of
members of a local gang that all live within a town bor-
dering the park that is typically densely populated and
very poor.

Conclusions
This article gives (a) a practical, software-based guide to
developing a federated database of criminal evidence
items, (b) a non-Bayesian statistical estimation method
of the true network, (c) generalized link weights, (d) a
focused, simplified protocol for using disparate social
network measures to identify key players in a criminal
network, and (e) a practical, software-supported imple-
mentation of the here-to-fore vague concept of action-
able intelligence.
Specific to our case study, the continued onslaught of

illegal wildlife trafficking transnational crime syndicates
on charismatic species such as rhino [56] forced author-
ities to consider different and integrated approaches.
These range from intensified protection, to demand re-
duction and ways of providing products [10]. We argued
that these contentious strategic responses share a com-
mon challenge – competition and conflict with wildlife



Actionable Intelligence
30 September 2013

1. INTELLIGENCE: Key Players
Eigen Vector Centrality Betweenness Centrality

Player Group Player Group
H100 – 0.397 Intermediary H100 – 9390.0 Intermediary
H92 – 0.328 Intermediary H28 – 8394.0 Intermediary

H140 – 0.322 Intermediary H98 – 7722.0 Intermediary
H147 – 0.301 Intermediary H92 – 7486.0 Intermediary
H109 – 0.277 Intermediary H33 – 5452.0 Intermediary

Degree Centrality Gould-Fernandez Total Brokerage
Player Group Player Group

H68 22.00 Intermediary H68 – 225.00 Intermediary
H124 – 17.00 Intermediary H124 – 133.00 Intermediary
H33 – 17.00 Intermediary H33 – 132.00 Intermediary

H100 – 15.00 Intermediary H100 – 96.00 Intermediary
H92 – 14.00 Intermediary H92 – 83.00 Intermediary

ACTION: Target arrests or surveillance of H68, H81, H79, H78, H80, H100, H28, H92, H98, H33 and H124

2. INTELLIGENCE: Sequence of arrests
Highest eigenvector centrality – H100
Group - Intermediary

First two highest betweenness centrality – H100, H28
Group - Intermediary

ACTION: Arrest H100 first then H28

3. INTELLIGENCE: Succession predictions 
H124 is predicted to succeed H100 H26 is predicted to succeed H28

ACTION: Increase surveillance on H124 and H26

4. INTELLIGENCE: Rising stars
Highest ratio of betweenness to degree centrality – H22
Group – Poacher 

ACTION: Increase surveillance, particularly communication means of H22

Figure 4 Kruger Rhino actionable intelligence report. An example of the output created for the rhino case study. Note that we observed the
network only once; hence, we could not predict rising stars or compute the network’s resilience.

Haas and Ferreira Security Informatics  (2015) 4:2 Page 12 of 14
crime syndicates. Because these are transnational in na-
ture, law enforcers from a single jurisdiction have limited
success in lasting disruption of crime networks because
information is in different databases. We illustrated the
use of federated databases to overcome this problem. Even
so, considerable trust between different jurisdictions re-
mains a key element. We also showed how several mea-
sures derived from social network analyses can provide
several types of actionable intelligence to law en-
forcers. This will allow targeted legal responses or task-
ing of investigators. We conclude that the use of social
network analyses applied to federated data may greatly as-
sist law enforcers to disrupt or even collapse transnational
wildlife trafficking criminal networks efficiently.

Appendix 1
MySQL Database of Wildlife Trafficking Criminals
Haas [60] created a free criminal intelligence database
written in the freely available MySQL language. It fol-
lows the SQL criminal intelligence database described in
[61]. MySQL version 5.2.3 or higher is needed and is
available from [62].
The web resource of Haas [60] contains an example that

consists of three files: createdatabase.sql, addtodatabase.sql,
and querydatabase.sql. The first file creates a six-table
database comprising of players, phones, cars, guns, random
identifiers and encryption keys. The second file gives an ex-
ample of adding three suspects to the database. The third file
runs the query needed for creating actionable intelligence.
The query file in the example generates two output files

that replace player names using two different coding ap-
proaches. The first uses internally generated random identi-
fier numbers as player identifiers. Doing so relieves the data
manager from having to maintain a log relating local sus-
pect identifiers to local suspect names. Note however, that
random identifiers are not a substitute for encrypted names
in a federated database because there is no guarantee that
the same suspect will have the same random identifier in the
local databases of two or more federation members (see text).
The second output file is an example wherein suspect

names are encrypted via the MySQL implementation of
the AES encryption algorithm of Daemen & Rijmen [63].
This encryption algorithm is considered unbreakable.
The web resource [60] also contains an implementation

of the deduplication algorithm in [38].

Appendix 2
Parameter estimation details
For g > 20, the stochastic blockmodel’s likelihood
function becomes computationally intractable. For these
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networks, maximum simulated likelihood (MSL) as im-
plemented in the id software system [60] is used to fit
the parameters. This implementation of MSL requires a
distance metric between two networks. For this purpose,
the metric of [64] is employed because its run-time is
linear in g. The marginal, multivariate distribution of Yo

is approximated by simulating many networks, (Y, X)
and computing the density estimate of yo using only the
simulated values on Yo regardless of the values on (Yc,
X). One could argue that no metric is needed because
with a large enough set of simulated networks, the prob-
ability of networks that contain the observed network is
simply the fraction of these simulated networks that
contain the observed one. The difficulty is that there is a
large number of states: potentially 2g2 or 2.58 × 10120 for
g = 20. This means that a very large number of simulated
networks might be needed in order to generate just one
that contains the observed network when the parameters
have been set to values that make networks containing the
observed one unlikely. For the optimization’s run-time to
be reasonable however, only a modest number of simu-
lated networks can be generated at each evaluation of the
objective function (each setting of parameter values). In
this case, it is unlikely that any network will be simulated
that contains the one observed. But unless such networks
are simulated, the probability of networks that contain the
observed one under a particular setting of parameter
values will be exactly zero. This in-turn, will produce large
regions of the search space wherein the objective function
does not change value; thus causing the optimization
algorithm to fail.

Appendix 3
Software options for creating actionable intelligence
Pajek is a free package that can draw a network and
compute centrality measures on it. Network inference
via the stochastic blockmodel can be performed with the
free package id [60]. The Actionable Intelligence Report
described in this article is implemented in id. As men-
tioned above, a commercial package from IBM is Analyst’s
Notebook [37]. This system combines a non-SQL criminal
intelligence database with extensive network drawing cap-
abilities and SNA metrics. The Tartan plug-in for Analyst’s
Notebook from [65] allows unobserved links to be pre-
dicted via the Common Friends score function (see text).
Neither Analyst’s Notebook nor the Tartan plug-in have
the capability to predict group memberships. Another
commercial package is Sentinel Visualizer [66]. This pack-
age has many SNA metrics and, unlike Analyst’s Notebook,
an SQL-compliant criminal intelligence database. Sentinel
Visualizer cannot infer links or group memberships.
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