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Abstract 

Objectives:  This paper describes the use of machine learning techniques to implement a Bayesian approach to 
modelling the dependency between offence data and environmental factors such as demographic characteristics 
and spatial location. The main goal of this paper is to provide a fully probabilistic approach to modelling crime which 
reflects all uncertainties in the prediction of offences as well as the uncertainties surrounding model parameters.

Methods:  The proposed method is based on a Bayesian framework, with a Gaussian Process prior and MCMC, 
allowing uncertainties in prediction and inference to be quantified via the posterior distributions of interest. By using 
Bayesian updating, these predictions and inferences are dynamic in the sense that they change as new information 
becomes available.

Results:  We applied the proposed methodology to particular offence data, such as domestic violence-related 
assaults, burglary and motor vehicle theft, in the state of New South Wales (NSW), Australia. Our results demonstrate 
the strength of the technique by validating the factors that are associated with high and low criminal activity, includ-
ing bounds on the degree of the relation.

Conclusions:  We argue that this fully probabilistic approach will improve prediction, in the sense that the uncer-
tainties are more accurately quantified, with attendant benefits to policymakers and policing organisations seeking 
to deploy limited criminal justice resources to prevent and control crime. While limitations and areas for potential 
improvement are identified, the success of the Bayesian approach, implemented using machine learning techniques, 
in a criminological context represents an exciting development.
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Introduction
For over 150 years, criminologists have aimed to under-
stand crime; why it occurs, where and when. In most 
cases, this largely social scientific exercise has centred on 
the belief that to better understand who commits crime 
is to maximise the chances that social and criminal jus-
tice policy can be optimally designed to improve preven-
tion, mitigate risks and manage the efficient allocation 
of scarce resources. Understanding crime has often 

involved focusing on longitudinal population informa-
tion, behaviours and environments including education, 
employment, family structures, health, and contacts 
with the policing and justice system. The latest develop-
ments in data science and machine learning offer new 
ways to predict the incidence of crime and to understand 
the impacts of societal and individual characteristics on 
criminal behaviour.

In this work we show how to build fully probabilistic 
models that are able to answer important questions about 
crime, such as: What is the probability of the occurrence 
of a crime at a particular location? What are the char-
acteristics of the population that affect the incidence of 
crime?
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There are two challenges that need to be addressed 
in order to properly answer these questions. The first 
challenge is to define appropriate probabilistic models; 
the second is to construct machine learning algorithms 
to estimate these models and quantify the uncertainty 
around these estimates.

The contributions of this paper are the following:

1.	 Provide evidence based quantitative methodol-
ogy that relates crime to environmental and demo-
graphic information by coupling the richness of the 
demographic and historical crime data with state of 
the art machine learning algorithms and probabilis-
tic models. For the proposed model, the dependent 
variable is the crime rate at a particular location, 
which depends on multiple explanatory variables. 
Our methodology is general enough to allow a wide 
variety of location-based explanatory variables to be 
incorporated into the model, including demographic 
characteristics of the population, environmental fea-
tures, and transport density, among many others.

2.	 Combine parametric and non-parametric techniques 
to model the dependency between the incidence of 
crime and location-specific factors, as well as to learn 
spatial correlations without assuming any functional 
form, which further improves the accuracy of predic-
tion. As Bowers and Johnson [5] and Steenbeek and 
Weisburd [30] have pointed out, examining the spa-
tial distribution of crimes at different geographical 
levels is fundamental for achieving an understanding 
of crime. The methods presented in this paper gen-
erate a continuous estimation of crime intensity over 
space. The underlying spatial estimation will increase 
its accuracy automatically when higher spatial reso-
lution data are used as input.

3.	 Propose a fully probabilistic model, which is able 
to quantify the uncertainty in the predictions as 
well as model parameters. Accurate quantification 
of all sources of uncertainty is necessary to achieve 
informed and appropriate decision-making aris-
ing from the output of the models presented in this 
paper. Most work in this field only report point 
estimates of the quantities of interest [2, 4, 11], and 
either ignore or give rough approximations of uncer-
tainty. We note that Weisburd et al. [33, chapter 22], 
report confidence intervals but these confidence 
intervals fall short of estimating the true uncertainty 
on the counts. First they assume the asymptotic nor-
mality of the sampling distribution of the regression 
coefficients and second they are conditional on esti-
mates of other parameters in the model; unlike the 
Bayesian approach where inference is made via the 
marginal posterior distribution, where the margin-

alisation is w.r.t the posterior distribution of all other 
parameters.

The Bayesian paradigm is the only logistical consistent 
framework in which to make probabilistic statements 
regarding the complex models presented in this paper. 
For this reason Bayesian methods have become the norm 
in many other fields of study, such as robotics, where 
decisions are taken based on models learnt from data and 
the associated uncertainty. It is our hope that the Bayes-
ian treatment of probability models, such as presented 
in this paper, will lead to informed policy decisions, the 
evaluation of the impact of specific factors on crime and 
the acquisition of new information.

The paper is structured as follows. In “Related work” 
section we review the existing work on models for crime, 
especially work focusing on demographic and spatial 
dependencies. “Methodology” section presents the pro-
posed models and the machine learning algorithms used 
to learn the model parameters from real data, focussing 
on Bayesian Linear Regression (BLR), Gaussian Processes 
(GPs) and Markov Chain Monte Carlo (MCMC). Follow-
ing this, “Application: regression over crime rates” sec-
tion shows experimental results and comparisons on real 
world crime data. “Discussion” section presents a discus-
sion of the results and highlights the links to criminologi-
cal theory. Finally, “Conclusion and future work” section 
draws conclusion and presents ideas for future work.

Related work
Over the last few decades there has been considerable 
work on quantitative criminology. Particular interest has 
been on the study of the occurrence of crime, focussing 
on the spatial–temporal patterns of crime, and the fac-
tors related to criminal activity, including population 
characteristics and environmental factors. In this section, 
we briefly describe the relevant literature associated to 
the quantitative analysis of crime, with particular focus 
on regression techniques for criminology.

Relevant and popular models for spatial analysis of 
crime are presented in Chainey et al. [7], Eck et al. [12], 
Leitner [19], Perry et al. [27] and Piquero and Weisburd 
[28], include Kernel Density Estimation (KDE), K-means 
clustering, covering ellipses and other heuristics that 
result in hot-spot identification and spatio-temporal 
analysis of crime. Perry et al. [27] detail many other tech-
niques to identify seasonality and periodicity at differ-
ent resolutions in time series of crime intensity, however 
Perry et  al. [27] fail to explore multivariate representa-
tions of crime that couple demographic and environmen-
tal effects. Gorr et al. [16] compare several methods for 
modelling time-series such as the random walk model, 
and various versions of exponential smoothing for 
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different crime types. Nogueira de Melo et al. [22] have 
found different temporal patterns for different crime 
types. The effect of time coupled with risk terrain mod-
elling is explored by Kocher and Leitner [18] and also 
noted in Perry et  al.  [27]. Although these methods are 
widely used by crime practitioners, they are ad-hoc tech-
niques, in the sense that there is no consistent theoretical 
underpinning of how point estimates, and the uncertain-
ties associated with these estimates, are obtained.

There are various approaches where authors have 
opted to model the occurrence of crime as a solely spa-
tial–temporal phenomenon. Mohler et  al. [23] propose 
a self-exciting process model of crime, considering a 
crime intensity function which varies over space and 
time according to a Poisson Point Process that presents 
higher values near areas that have experienced crime in 
the past. Another spatial–temporal approach by Flax-
man [13] uses space-time Gaussian Process (GP) over 
the intensity of a Poisson distribution of event counts to 
explain the occurrence of crime. Flaxman [13] combines 
spatial–temporal covariance functions with periodic 
components that can capture seasonality in the tem-
poral domain. In recent years, Gaussian Processes [29] 
have been used extensively in machine learning as pri-
ors over unknown functions, for modelling spatially and 
temporally correlated phenomena. Corcoran et  al.  [9] 
cluster the occurrence of crimes and uses a Neural Net-
work model for auto-regressive prediction at each cluster. 
Grubesic and Mack [17] provide a comprehensive review 
of existing techniques for spatial–temporal modelling of 
crime, focusing on the importance of coupled space-time 
model which have varying temporal patterns depending 
on the location. These approaches model crime solely as 
a function of space and time, disregarding other sources 
of explanation. While these techniques may lead to good 
predictive performance, they do not help understand the 
factors which drive crime, necessary for the optimal allo-
cation of scarce resources for the prevention of crime.

Other approaches to model crime have been explored 
by Osgood [26], who applied Poisson regression to crime 
rates using demographic quantities as explanatory vari-
ables. Boessen and Hipp [4] assume crime counts fol-
low a negative binomial distribution, and use a general 
linear model to model the dependence of crime on the 
population characteristics of a specific area as well as 
surrounding areas. Davies [10] considers street net-
work and near-repeat principles to explain burglaries 
also including the effect of small communities to under-
stand dynamics in the network using differential equa-
tions. Deadman [11] has also built a temporal forecasting 
tool from demographic characteristics without includ-
ing any spatial dependencies. Tita and Radil [31] recog-
nise that spatial data and other characteristics need to 

be considered simultaneously for correct inference and 
accurate predictions.

Antolos et al. [2] used Logistic Regression (LR) for cal-
culating the probability of occurrence of a crime based 
on previous criminal events and physical characteristics 
of the environment that reflect connectivity to crime epi-
centres. Similarly, Berk et al. [3] applied LR, CART and 
Random Forest models to forecast subsequent domestic 
violence calls. They found several limitations with LR and 
identified overfitting problems with CART.

Liu and Brown [20] and Wang et al. [32] have consid-
ered demographic, spatial, temporal and social-media 
dependent models. Particularly Liu and Brown [20] pro-
pose a transition density model that takes into account 
demographic, economic, social, victim and spatial attrib-
utes of criminal activity.

Our approach is mainly inspired by the work of Flax-
man [20], Liu and Brown [13] and Liu and Brown [32]. 
We derive a general probabilistic model that can cap-
ture generic features across space and that can consider 
spatial correlations using a non-parametric component. 
As noted by Weisburd et al. [33], quantitative studies in 
criminology focus on ’mechanical’ reporting of estimates 
and predictive power. These studies ignore the uncer-
tainty around these estimates. In contrast, our Bayesian 
approach is fully probabilistic and quantifies all sources 
of uncertainty, which is necessary for effective policy and 
decision making.

Methodology
In this section we present the methods and probabilis-
tic models used for inference and prediction regarding 
crime rates. We take a Bayesian approach, and use the 
posterior mean for prediction and make inference via the 
marginal posterior distribution of the quantity of inter-
est. To do this, we propose a probabilistic model which is 
prescribed by a set of parameters which we denote by θ . 
Inference regarding these parameters is made via the pos-
terior probability distribution denoted by p(θ

∣

∣D) , where 
D is a dataset and the notation  , means “conditional on”. 
This posterior distribution is given by Bayes theorem to 
be

The term p(D|θ) represents the likelihood of the data 
being generated, given the parameters θ , and p(θ) is 
known as the prior probability distribution, which 
encodes prior knowledge about these parameters. The 
term p(D) is the marginal probability distribution of the 
data. It is a normalising constant and it is independent of 
the parameters θ.

(1)p(θ |D) =
p(D|θ)p(θ)

p(D)
.
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In the following sections we:

1.	 Describe the regression model for crime rate assum-
ing that the noise of this model is spatially independ-
ent.

2.	 Discuss a mixture model that is aware of spatial cor-
relations.

3.	 Present the algorithms used to learn the model 
parameters from the data.

Bayesian linear regression with i.i.d. errors
Suppose we wish to predict the crime rate, y, or a par-
ticular offence, at location i, conditional on a number 
location-specific characteristics, contained in x.1 One 
approach is to assume that the observed (log) crime rate 
yi , is a combination of a signal, f, corrupted by noise, ei , 
such that

The noise is assumed to conform to some distribution, 
which in this case we assume to be Gaussian, so that 
e

i.i.d.
∼ N (0, σ 2

e ) , where i.i.d refers to independently and 
identically distributed samples. In general, the signal f 
can take any functional form, however in linear regres-
sion it is assumed to be linear, so that f (xi) = xiβ , where 
xi = (1, xi1, . . . , xiP) , β = (β0,β1, . . . ,βP) , where xik is the 
ith observed value of characteristic k, and P is the num-
ber characteristics.

The parameters that fully specify this model are given 
by θ = {β , σe} , the data are denoted by D = (X , y) , where 
X = (x′1, . . . , x

′
n)

′ , y = (y1, . . . , yn)
′ and n is the number 

of locations with recorded crime rates and their respec-
tive location-specific characteristics.

If the ei ’s in (2), conform approximately to our assump-
tions, i.e e i.i.d.

∼ N (0, σ 2
e ) , then the likelihood p(y|X , θ) 

is the familiar multivariate Gaussian distribution. Simi-
larly, the predictive distribution of the unobserved crime 
rate at a particular location, y⋆ , with characteristics x⋆ , is 
given by p(y⋆|x⋆,D) and is equal to

For computational ease, we follow Zellner (1986) and use 
a g-prior for p(θ) , given in (4). This ensures that the pos-
terior distributions p(θ |D) and p(y⋆|x⋆,D) are available 
analytically [6].

(2)yi = f (xi)+ ei.

(3)p(y⋆|x⋆,D) =

∫

R|θ |

p(y⋆|x⋆,D, θ)p(θ |D)dθ .

Our model and priors for (2) can be written as,

Bayesian linear regression with spatial dependency
When dealing with spatial data, such as described in this 
paper, it is unrealistic to assume that the crime rate is 
only dependent on those location specific characteristics 
which are measured, because locations that are close to 
each other in space are likely to be correlated. So we relax 
the assumption that errors in e = (e1, . . . , en) are inde-
pendent and modify (2) to become,

where the error terms are given by2 ǫi
i.i.d.
∼ N (0, σ 2

ǫ ) and 
ui is the vector of spatial coordinates of location i and 
h(u) is a nonparametric function of u . In addition we 
assume that the relation between crime rate location-
specific characteristics in x , is independent of the rela-
tionship between crime rate and spatial co-ordinates in u.

We place a Gaussian Process Prior (GPP), over the 
unknown function h = (h1, . . . , hn)

′ , which is equivalent 
to stating that h ∼ N (0,K (�)) , and K (�) is an n× n 
matrix, with hyperparameters contained in � , and ith, 
jth element, kij(·, ·) = k(ui,uj) , equal to cov (h(ui), h(uj)) . 
There are many options for the particular form of kij , see 
[29, p. 94]. For example, the isotropic squared exponen-
tial covariance function given by

In this example � = (σ 2
f , l) , where σ 2

f  controls the ampli-
tude of the unknown function, and l controls the variabil-
ity of the function across space. If f is linear in x , the full 
set of parameters that specify the model in Eq.  5 are 
θ = {β , σǫ ,�}.

The combination of using a parametric model for the 
relationship between crime rate and location specific 
characteristics and an additive nonparametric model 
for spatial dependencies, serves two purposes. First, the 
model is interpretable. In particular the regression coeffi-
cients, β , represent the proportional change in crime rate 
which will result from the same proportional change in a 
location-specific characteristic, after controlling for other 

(4)

yi|β , σ
2
e ∼N (xiβ , σ

2
e )

β|σ 2
e ∼N (0, gσe(X

′X)−1)

p(σ 2
e ) ∝ 1/σ 2

e

(5)yi = f (xi)+ h(ui)+ ǫi,

(6)k(ui,uj|�) = σ 2
f exp

(

−
�ui − uj�

2

2l2

)

.

1  We have chosen to use the log of crime rate as the dependent variable, and 
the log of the non-zero location-specific characteristics as the independ-
ent variables because the relationship between these two sets of variables is 
approximately linear and the residuals approximately normally distributed.

2  Note that the spatially independent error terms ei have been replaced by ǫi.
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non-observable factors which are a function of space, 
captured by h(u) . Second, by placing a flexible, nonpara-
metric prior over the function h(u) we are allowing the 
data to uncover spatial dependencies rather than enforce 
a parametric form. Thus the model is both parsimonious 
and flexible and therefore allows for accurate predictions 
while remaining interpretable.

Our model and priors for (5) is then

Inference and prediction are made via the posterior dis-
tributions, p(θ |D) and p(y⋆|x⋆,D) , as in “Bayesian linear 
regression with i.i.d. errors” section, except that these 
quantities are no longer available analytically and we 
use Markov chain Monte Carlo (MCMC) to perform the 
required numerical multidimensional integration.

Inference via Markov chain Monte Carlo (MCMC)
To carry out inference via the posterior distribution 
requires a multidimensional integration. MCMC is 
a very efficient way of achieving this. There are other 
methods to perform a multidimensional integra-
tion such as importance sampling or particle filters, 
but these are not usually as efficient as MCMC. There 
are also other methods which approximate the poste-
rior such as variational inference, which is faster than 
MCMC and therefore particularly useful with very 
large datasets, but less accurate.

In this section we describe how MCMC is used to 
approximate the posterior distributions, p(θ |D) and 
p(y⋆|x⋆,D) when no closed form exists for these distri-
butions. The predictive posterior distribution in Eq.  3 
can be approximated by

where θ [k] are drawn from the joint posterior distribution 
p(θ |D) . Note that the dependency on x⋆ has been obvi-
ated for notation purposes. Construction of an efficient 
MCMC scheme requires the development of a transition 
kernel which satisfies certain conditions. One of these 
conditions is that the chain is reversible, and this condi-
tion is ensured by using the Metropolis–Hastings algo-
rithm. Draws from the joint posterior are obtained using 

y|β , σ 2
ǫ , σ

2
f , l ∼N (Xβ ,K (�)+ Inσ

2
e )

β|σ 2
e ∼N (0, gσǫ(X

′X)−1)

p(σ 2
ǫ ) ∝ 1/σ 2

ǫ

p(σ 2
f ) ∝ 1/σ 2

f

p(l) ∝ 1/l

(7)

p
(

y⋆|D
)

=

∫

R|θ |

p
(

y⋆|D, θ
)

p(θ |D)dθ ≈
1

M

M
∑

k=1

p
(

y⋆|D, θ [k]
)

,

MCMC with a Metropolis–Hasting transition kernel to 
move the chain around the parameter space. Algorithm 1 
shows the pseudo code of the Metropolis–Hastings 
MCMC algorithm.

Algorithm 1 Metropolis-Hastings MCMC
1: Initialise θ[0].
2: for k = 1 toM − 1 do
3: Sample u ∼ U(0, 1).
4: Sample θp ∼ q(θp|θ[k])

5: if u < α = min 1, p(D|θp)p(θ[k]|θp)
p(D|θ[k])p(θp|θ[k])

then
6: θ[k+1] = θp

7: else
8: θ[k+1] = θ[k]

9: end if
10: end for

Application: regression over crime rates
In this section, we apply the proposed methodology to 
model particular types of criminal offences—Domestic 
Violence (DV) related assaults, Burglaries and Motor 
Vehicle Theft (MVT), in New South Wales (NSW), 
Australia. There are two goals in this section, the first is 
to evaluate the predictive performance of our technique 
and the second is to evaluate the ability of the model 
to make meaningful inference regarding the drivers 
behind specific crime types. The remaining of this sec-
tion is organised as follows. “The data” section presents 
a description of the data used for building the models. 
“MCMC for learning the model” section describes the 
procedures and specific information for learning the 
models from the data. Then, “Evaluation of models” 
section evaluates independent models for each crime 
type for a specific year and explores in detail the model 
for DV related assaults across a ten year period. Finally, 
“Discussion” section presents a discussion of the results 
and relations with existing research in the area.

The data
Criminal incident data over the time period 1997–2015 
was extracted from the Unit-Record Criminal Incident 
Dataset provided by the NSW Bureau of Crime Statis-
tics and Research (BOCSAR). The spatial information 
provided on each crime incident is a geographical area 
identifier, called Statistical Area Level 2 (SA2). SA2s are 
geographical areas that present a relatively homogene-
ous population distribution. At this level of granularity, 
is it possible to visualise interesting patterns while pre-
serving the privacy of the individuals.
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Explanatory variables are selected from demographic 
data at SA2 level, extracted from census data for the 
years 2001, 2006, and 2011 (the latest census data avail-
able at the time of writing). This information is pub-
licly available from the Australian Bureau of Statistics 
(ABS). The twelve demographic features and their sum-
mary statistics are presented on Table 1.

Crime counts for specific crime types are aggregated 
over space across SA2 and crime rates are calculated 
using the corresponding population information  (per 
one thousand people). We have excluded regions with a 
population lower than 1000, such as National Parks and 
Airports, which results into a total of 512 SA2 regions 
being subject of the study (from a total of 540). All data 
are standardised before training the proposed models, 
which assures that posterior probability distributions 
for the linear component parameters are comparable.

The method can cope with data of various granularity 
levels, dealing with the issues described by Andersen 
and Malleson [1], where they note that the results are 
different at alternative spatial aggregation scales.

MCMC for learning the model
The implementation of Algorithm 1 and its application to 
learn the model described in Eq.  was conducted by using 
an existing Python package called emcee, which is an aff-
ine-invariant ensemble sampler for MCMC that has been 
well tested for a large range of machine learning applica-
tions [14, 15]. The algorithm uses the Metropolis–Hasting 
acceptance criteria, but rather than having one sampler, 
the algorithm evolves an ensemble of multiple walkers 
which explore the parameter space much faster. To pro-
pose a new position for one walker, the algorithm selects 
another walker at random from the rest of the ensem-
ble and chooses a new position that is a random linear 

combination of the positions of both walkers. We place a 
uniform distribution for the initial value for each MCMC 
chain (Line 1 of Algorithm 1) over the relevant range in 
the parameter space. The overall estimation is conducted 
with 200 chains, each with 1000 iterations after a burn-in 
phase of 500 iterations, which removes large initial fluc-
tuations in the parameter space. The convergence of each 
chain can be inspected on the individual sample plots for 
each parameter in the “Appendix” (Figs. 8 and 9).

Evaluation of models
This section shows the results of applying the proposed 
methodology over different scenarios. It presents results 
on the predictive and generalisation capabilities of the 
proposed methodology. To evaluate the predictive capa-
bilities of the model and to control for overfitting we split 
the dataset randomly by geographical regions into train 
and test data with a ratio of 9:1, respectively. Test data is 
hidden from the model for learning process and the pre-
dictive distribution was obtained according to Eq.  7 for 
these test and train locations. The target variable is the 
crime rate of each crime type at SA2 areas, while explan-
atory (or independent) variables are demographic fea-
tures of the location where the incidents occurred.

Three crime types
We independently modeled three different crime catego-
ries: Domestic Violence (DV) assaults, Burglaries (break/
enter and stealing) and Motor Vehicle Theft (MVT), for 
the period 2009–2013.3 These models were implemented 
based on spatial dependencies and demographics, as pro-
posed in “Bayesian linear regression with spatial depend-
ency” section.

Table 1  Demographic features and summary statistics across statistical areas based on the ABS census data 2011

Variable description Min Max Mean SD

Number of separated males (per 100 total males) 1 4 2 1

Percentage of unemployment 2 14.3 6 2.2

Population density (per km2) 0.02 14301 1466 2027

Median total household weekly income 618 2610 1264 449

Median mortgage monthly repay 300 3289 1898 535

Median rent weekly 50 690 292 112

Percentage of people with no religion 4 42 18 7

Median age 22 59 39.16 5.31

Percentage of immigrants 2 63 21 15

Percentage of English-only speakers 13 97 78 21

Percentage with vocational education only (Certificate Level 1 or 2 per all 
levels)

3 13 7 1

Number of families with lonely parent (per 100 total population) 1 10 4 1

3  We aggregated crime data over 5 years, around the 2011 census data, to 
achieve statistical significant inference for long-term decision making.
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Figures 1, 2 and 3 plot observed against predicted crime 
rate and show the diagnostics for each model and the fit 
for DV-related assaults, Burglaries and MVT respectively. 
Each point in the plots represents a region, and it can be 
concluded from visual inspection that there is a corre-
lation between predicted and observed log crime rates 
for all the selected crime types. These figures also show 
that the residuals are independent and follow a Gaussian 

distribution, as assumed by the model given in “Bayesian 
linear regression with spatial dependency” section. 

A quantitative estimation of the error is the root 
mean squared error (RMSE) and is calculated over the 
log crime rate ( RMSErate ) and over the crime counts 
( RMSEcounts ) according to the following expressions:

where yj is the observed log crime rate at location j, y⋆j  is 
the posterior mean estimate of the log crime rate at loca-
tion j, N is the number of locations in the test/train set, and 
Pj is the total population at location j  (in thousands). We 
calculate the error in the number of crimes to contextu-
alise the magnitudes of crime incidents in the discussion.

We have also calculated the percentage of predictions 
within Credible Intervals (CI).4 The CI are calculated 
based on the posterior predictive density, given by Eq. 7. 
The % of predictions within CI represents an accuracy 
measure with respect to uncertainty quantification. If the 

(8)RMSErate =

√

∑N
j=1 (yj − y⋆j )

2

N
,

(9)RMSEcounts =

√

∑N
j=1 P

2
j (e

yj − e
y⋆j )2

N
,

Fig. 1  DV-related assaults—the expected value of the predicted 
crime rate (vertical axis) for DV-related assaults as function of 
the observed crime rate (horizontal axis) for all NSW SA2 regions 
in between the years 2009 and 2013. Blue and red points show 
estimations for train and test locations respectively

Fig. 2  Burglaries—the expected value of the predicted crime rate 
(vertical axis) for burglaries as function of the observed crime rate 
(horizontal axis) for all NSW SA2 regions in between the years 2009 
and 2013. Blue and red points show estimations for train and test 
locations respectively

Fig. 3  Motor vehicle theft—the expected value of the predicted 
crime rate (vertical axis) for motor vehicle theft as function of 
the observed crime rate (horizontal axis) for all NSW SA2 regions 
in between the years 2009 and 2013. Blue and red points show 
estimations for train and test locations respectively

4  Credible Intervals differ from Confidence Intervals in that credible inter-
vals are associated with posterior distributions, while confidence intervals 
often assume that the distribution of the sampling estimates are Gaussian.
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assumptions of our model are correct, we would expect 
that 95% of the actual crime rate at test locations to lie 
within the 95% predictive posterior distribution.

Table  2 shows several model performance indicators, 
RMSE, % within CI and correlation between estimated 
and observed values over the train and test data for every 
crime type. The main indicators are that there is a high 
linear correlation between predicted and observed val-
ues for every crime type, which indicates that the model 
is finding associations within the covariates and using 
that information to explain the crime rate. The first two 
numeric columns of Table  2 show a similar magnitude 
of the error for different crime types. We note that the 
performance indicators suggest that the predictions for 
DV-related assaults are more accurate than those for 
Burglaries and MVT, i.e. lower RMSE, higher % within CI 
and higher correlation between predictions and observa-
tions. The reasons behind this will be discussed in “Dis-
cussion” section.

Tables 3, 4 and 5 show the summary statistics for the 
marginal posterior distributions for the model param-
eters of DV-related assaults, burglaries and MVT 

respectively. A graphical representation of these values is 
shown as box plots in Fig. 4. These values are calculated 
according to Eq. 7 using Algorithm 1. The dimensional-
ity of θ is 16 and is composed of: the regression co-effi-
cients, β , which corresponds to an intercept, β0 , and one 
parameter for each demographic feature, β1 . . . β12 ,; σǫ , 
that represents the standard deviation of the noise in the 
process; and � , which has a dimensionality of 2 and con-
tains the length- scale and signal variance parameters in 
the covariance kernel for the Gaussian Process, given by 
Eq. 6.

DV‑related assaults
Further analysis is conducted over DV-related assaults to 
study the advantages of the proposed methodology and 
explore variations of the results over a 10 year period.

Advantage of semi‑parametric modelling
Firstly, we compare and evaluate the advantages of incor-
porating spatial dependence in our model. We compare 
the spatially dependent model, given by Eq.  5, with the 

Table 2  Error statistics for the models for different crime types [DV-related assaults, Burglaries, and Motor-Vehicle-Theft 
(MVT)] for the period 2009–2013

Root-mean-squared-error (RMSE) over log crime rate, crime counts, percentage of locations within the 95% Credible Interval (CI) and correlation between predicted 
and observed values

RMSE log crime rate RMSE crime count % within CI Correlation Pred/
Obs

Train Test Train Test Train Test Train Test

DV 0.314 0.318 92.1 88.4 94 98 0.86 0.85

Burglaries 0.301 0.350 191.5 208.0 90 90 0.84 0.72

MVT 0.345 0.372 191.7 191.3 89 88 0.78 0.66

Table 3  DV-related assaults inference—summary statistics for  regression parameters for  DV-related assaults 
between 2009 and 2013

The table shows the regression coefficient’s posterior mean, SD and 95% credible intervals. Rows are sorted based on descending posterior mean

Parameter Posterior mean Posterior SD 95% Credible Interval

Percentage of separated males 1.40 0.10 [1.20, 1.59]

Population density 0.96 0.13 [0.68, 1.20]

Percentage of unemployment 0.70 0.14 [0.42, 0.98]

Percentage of English speaking only 0.65 0.14 [0.37, 0.94]

Percentage of people Cert 1 or 2 0.53 0.11 [0.32, 0.75]

Number of families with lone parent 0.23 0.14 [− 0.04, 0.53]

Median total household income − 0.09 0.18 [− 0.45, 0.28]

Percentage of immigrants − 0.19 0.15 [− 0.45, 0.14]

Percentage of people with no religion − 0.49 0.09 [− 0.68, − 0.31]

Median mortgage monthly repay − 0.66 0.28 [− 1.22, − 0.10]

Median rent − 0.91 0.24 [− 1.40, − 0.43]

Median age − 1.05 0.13 [− 1.29, − 0.77]
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spatially independent one, given by Eq.  2. The results 
show that the RMSE decreases by ∼13% (from 0.35 to 
0.31), indicating that the data is indeed spatially depend-
ent and allowing for this results in more accurate pre-
dictions. We also compared the performance of a purely 
spatial model, resulting in the RMSE increasing by 26% 
with respect to the semi-parametric combination of 
space and demographics (from 0.31 to 0.39). For refer-
ence, the RMSE at test locations for a naive model with 
no predictors is 0.552 (see Table  6). The naive model 
represents a basic assumption for the estimation of the 
crime rate, for which the expected value is independent 
of space and demographics, by becoming the mean crime 
rate across the entire state.

Figure 5 shows the posterior distribution of σ 2
e  , σ 2

ǫ  and 
σ 2 (for a purely spatial model). The posterior distributions 
are shown as histogram across all MCMC chain iterations. 

It can be seen that, as expected, by incorporating more 
information the noise standard deviation is reduced. The 
worst approach is to use a purely-spatial model. And by 
merging demographics and space, the explanatory and 
predictive power of the model is improved.

Even though the distribution of the noise in the semi-
parametric model overlaps with the demographic only 
model, the semi-parametric model with a Gaussian Pro-
cess over space is consistent with lower noise level.

Another interesting visualisation is shown in Fig.  6, 
where we plot a heat map of domestic violence across the 
state of NSW, Australia. The actual crime rates, shown in 
the top section, are compared to the predicted ones. The 
ability of the model to capture the spatial dependencies 
and provide accurate estimates of the true crime levels, 
based only on demographic and spatial information, is 
striking.

Table 4  Burglaries inference—summary statistics for regression parameters for burglaries between 2009 and 2013

The table shows the regression coefficient’s posterior mean, SD and 95% credible intervals. Rows are sorted based on descending posterior mean

Parameter Posterior mean Posterior SD 95% Credible Interval

Percentage of unemployment 1.19 0.15 [0.89, 1.49]

Percentage of people Cert 1 or 2 0.98 0.12 [0.73, 1.21]

Percentage of separated males 0.83 0.11 [0.62, 1.05]

Population density 0.72 0.14 [0.46, 1.01]

Percentage of English speaking only 0.45 0.17 [0.13, 0.80]

Median total household income 0.24 0.20 [− 0.17, 0.62]

Percentage of people with no religion 0.07 0.11 [− 0.14, 0.28]

Median mortgage monthly repay 0.05 0.29 [− 0.54, 0.64]

Number of families with lone parent − 0.23 0.16 [− 0.55, 0.06]

Median age − 0.32 0.14 [− 0.63, − 0.05]

Median rent − 0.63 0.25 [− 1.12, − 0.12]

Percentage of immigrants − 0.82 0.17 [− 1.15, − 0.47]

Table 5  Motor vehicle theft (MVT) inference—summary statistics for  regression parameters for  MVTs between  2009 
and 2013

The table shows the regression coefficient’s posterior mean, SD and 95% credible intervals. Rows are sorted based on descending posterior mean

Parameter Posterior mean Posterior SD 95% Credible Interval

Population density 1.81 0.15 [1.52, 2.10]

Percentage of separated males 1.29 0.11 [1.06, 1.51]

Percentage of people Cert 1 or 2 0.78 0.13 [0.52, 1.02]

Median rent 0.70 0.27 [0.14, 1.22]

Percentage of unemployment 0.39 0.16 [0.09, 0.72]

Percentage of English speaking only 0.21 0.17 [− 0.10, 0.56]

Percentage of people with no religion 0.19 0.11 [− 0.01, 0.42]

Median mortgage monthly repay 0.16 0.32 [− 0.50, 0.79]

Number of families with lone parent − 0.42 0.16 [− 0.73, − 0.10]

Median total household income − 0.47 0.21 [− 0.87, − 0.05]

Median age − 0.98 0.15 [− 1.27, − 0.69]

Percentage of immigrants − 1.20 0.18 [− 1.54, − 0.84]
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Robustness over time
We further explore the time-varying nature of the 
dependency between crime rate and demographic char-
acteristics and spatial location by conducting three 
cross-sectional studies aggregating crime over three time 
periods 1999–2003, 2004–2008, and 2009–2013. Each 
period spans over 5 years and is centred around the Cen-
sus 2001, 2006, and 2011 data. A boxplot of the draws 
of the regression coefficients from their posterior dis-
tribution for each demographic feature and time period 
distribution is given in Fig. 7. The box is defined by ±1 
standard deviation for a Gaussian distribution—and the 

median as vertical line inside the box. The dashed hori-
zontal line indicates the 96% confidence intervals, i.e. 2 
and 98 percentiles. A positive value in a regression coef-
ficient is associated with an increase in crime rate and 
vice-versa.

Fig. 4  Box plot of the demographic regression coefficients for three different crime types: DV related assaults, burglaries and MVT

Fig. 5  Histograms of noise levels for three different model 
combinations. Red shows a purely spatial model, blue shows a model 
built purely on demographics and grey presents the proposed model, 
which combines demographic and spatial information

Table 6  Comparison of  the  RMSE between  our spatial-
demographic regression model and  a  naive model 
(average frequency over  crime rates), for  DV-related 
assaults in the period 2009–2013

RMSE log crime rate RMSE crime count

Train Test Train Test

Spatial-dem. reg. 0.314 0.318 92.1 88.4

Naive 0.544 0.552 162.4 158.1



Page 11 of 19Marchant et al. Secur Inform  (2018) 7:1 

Fig. 6  Crime-rate heat map of DV related assaults (per 1000 people on natural logarithmic scale). Top: Ground Truth crime rate. Bottom: 
Spatial-demographic semi-parametric model of crime rate. The inset is the Sydney region, while the white areas are those for which there are no 
data because, for example, the location is in a national park
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Generalisation capabilities
In order to validate our model and verify for overfit-
ting in a more principled manner, we have also con-
ducted tenfold cross validation for DV-related assaults. 
The results show a mean RMSE of 0.30 ± 0.02 over the 
tenfold evaluations.

Discussion
In this section we analyse the result, link some of the 
results to existing criminological theory and compare 
with existing work in the area.

Inference on demographics
To understand how the selected demographic factors 
contribute to specific crimes type we need to look at the 
posterior distribution over the regression parameters. 
As described in “Bayesian linear regression with spatial 
dependency” section, the values of β can be interpreted 
as percentage increase in crime rate which would result 
from a percentage increase or each percentage increase 

in the independent variable. In this particular case, each 
βi represents how a unit increase/decrease in the per-
centage of demographic variable i is related to the per-
centage increase/decrease in the log crime rate.

Since we are using a fully probabilistic and multivariate 
Bayesian approach, the MCMC algorithm provides a joint 
probability density function for the whole parameter space. 
This joint density can be explored for each independent 
variable and the marginal distribution for each parameter 
is plotted in the “Appendix”, Figs. 10 and 11 (only for DV-
related assaults due to space constraints). It can be seen that 
all these variables are approximately Gaussian and Tables 3, 
4 and 5 show the summary statistics for each variable for 
each crime type. A positive posterior mean is linked to an 
increase in the crime rate for the particular crime type. 
However, attention needs to be drawn to the Credible 
Interval (CI). If the CI contains zero, then there is a non 
negligible probability that this parameter is zero, implying 
that there is no relation between that specific demographic 
variable and crime rate. A shorter CI also represents lower 
uncertainty around the value of the specific regression 

Fig. 7  Box plot of the regression coefficients across multiple time periods for demographic factors and DV related assaults
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coefficient, increasing trustworthiness of the relationship 
between that specific covariate and crime.

Box-plots of the regression coefficient samples drawn 
from their posterior distributions for the three different 
types of crime appear in Fig. 4. The box is defined by ±1 
standard deviation for a Gaussian distribution—and the 
median as vertical line inside the box. The dashed hori-
zontal line indicates the 96% confidence intervals, i.e. 2 
and 98 percentiles.

We have grouped variables into three categories. The 
first category consists of covariates that are unequivo-
cally positively related to an increase in crime: Percentage 
of Separated Males, Population Density, Education and 
Unemployment. This is similar to the results reported 
in Nivette [25], who found that the proportion of males 
and population density where positively related to crime. 
The second category is composed by those covariates 
that have a negative relation with all three crime types, 
being Age and Immigrants. Lastly, the third category is 
encloses the covariates for which the impact varies across 
crime type: Religion, Lone Parent Family, Income, Mort-
gage and Rent.

The main observation is that some of the demographic 
factors such as rent, mortgage, and religion have differ-
ent impacts on certain crime types. Of particular note is 
the fact that areas which have a high proportion of peo-
ple claiming to be religious are less likely to experience 
theft or burglary but more likely to be victims of domes-
tic violence. Similarly, areas with high mortgage/rental 
payments are less likely to experience domestic violence 
but more likely to experience theft or burglary. However, 
living in an area with a high immigrant population is 
associated with lower crime rates across all three crime 
types; lower theft, lower burglaries and lower domestic 
violence. One of the open questions, subject of future 
research, is whether immigration itself reduces the actual 
number of crimes committed in these areas, due to the 
selection process of the immigration office in terms of 
education and possible pre-offences, or alternatively only 
reduces the number of recorded crimes, e.g. due to with-
holding information or less willing to contact police.

It can be seen that the same demographic factors con-
tribute in similar ways to DV related assaults across all 
years with the largest variation over time in the areas of 
education and unemployment. These results suggest, if 
data were available at a finer temporal resolution, that 
explicitly modelling time may show further variations.

Prediction errors
Regarding prediction errors, we suspect that the larger 
uncertainties in prediction for non-DV-related crime 
types is due to the fact that crimes such as MVT and 
burglaries are not necessarily committed by criminals liv-
ing in same area, whereas most of DV assaults occur in 
the residence of the persons of interest (in fact, 81% of 
DV Assaults occur in a residential area). Since our cur-
rent demographic model reflects only data of individu-
als living in that particular area, transient population are 
not currently taken into account, and thus lead to larger 
uncertainties in our predictions. For example, motor 
vehicle theft criminals focus on locations with numerous 
vehicles and low capable guardianship Cohen and Felson 
[8]. Thus, inclusion of variables that estimate ambient 
populations and consider the journey-to-crime literature, 
will enhance the quality of predictions of offences com-
mitted away from an individual’s residential address.

Prediction errors and the patterns captured by the 
model, represented by the parametric regression com-
ponent, will depend strongly on the selected subset of 
explanatory variables. We are actively working on includ-
ing covariates of other domains, such as environmen-
tal features, and include these in the system for future 
research. However, there is no particular changes that 
need to be done to the proposed methodology, since the 
strength of our method is that any type of features can be 
included, i.e. the model does not limit the type of features 
included in x.

Conclusion and future work
We have presented a fully probabilistic model that is able 
to accurately predict crime rates and provide uncertain-
ties surrounding those predictions, while simultaneously 
providing inference over the possible location-specific 
factors associated with crime. The inference around 
model parameters is via their posterior distribution 
which is estimated via MCMC. The main strengths of 
this approach are that it is fully probabilistic and pro-
duces estimates of regression parameters and predic-
tions, all with associated uncertainties and credible 
intervals. The performance of the proposed methodology 
has been validated with out of sample data and compared 
against naive crime models that assume independence 
with respect to demographics and space. The model also 
incorporates spatial dependency by placing a non-para-
metric prior over the evolution of the residuals across 
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space. The analysis included in this paper is conducted at 
a SA2 level but is general enough to allow other aggrega-
tion at other geographical segmentation units.

The results validate existing theoretical criminological 
tenets regarding the factors that are associated with high 
and low criminal activity, including bounds on the degree 
of the relation. The results also show how this model 
can be used for understanding different types of crime 
and what are the limitations depending on the location-
specific characteristics used to describe that particular 
phenomenon.

The study is a cross sectional one, but it compares the 
results of different cross sections in time. This analysis 
shows that it would be beneficial to include a temporal 
component in the model explicitly and this is the subject 
of future research. The purpose of the model, given its 
current form, is to capture patterns at the regional and 
demographic macro levels, which is useful for long term 
decision making and resource allocation. There are ben-
efits for including this seasonality for shorter term deci-
sion making in predictive policing and patrol planning, 
however, these are not the main applications of the pro-
posed methodology and will be studied in the future.

The are many other areas for future research. For 
example, an important concern requiring ongoing con-
sideration is the use of biased criminal record data to 
train the models and how that can affect the interpreta-
tion of the inference results. As acknowledged by Lum 
and Johndrow [21] and Mosher et al. [24], this is a prob-
lem widely shared by all quantitative methods that adjust 
model parameters based on previously collected datasets. 
In the case of crime, there is unknown over/under polic-
ing over certain groups of the population, which can be 
potentially reinforced when using results from models 
learnt from these data. This and many other discrimina-
tion issues are an active area of research, known as fair-
ness in machine learning. In future work, we will include 
bias quantification and other sources of information that 
can help uncover the ‘dark figure’ of crime.

Additionally, future research will include many other 
factors which may contribute to crime such as green 
space coverage, street lighting, and transport by placing 
priors over the inclusion of a factor in a model to gauge 
the robustness of the finding to prior assumptions. The 
inclusion of these spatial and the previously mentioned 
temporal dimensions of crime, consistent with environ-
mental criminological traditions, will further bolster the 
utility of the approaches adopted here. In so doing, pre-
dictions about crime in time and space will be improved, 
and policymakers will receive the advantage of meas-
urements of uncertainty. This will allow for greater con-
fidence in policy and resource allocation decisions of 
police, criminal justice and security-related agencies.
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Appendix: Markov chain Monte Carlo (MCMC) log 
probabilities
The log probability of the BLR prior is given as

with P the number of locations, N the number of demo-
graphic features, and

The log likelihood of the Bayesian Linear Regression is

where i is the index over the data points and j the number 
of demographic features. The combined log posterior of 
the Bayesian Linear Regression is then the sum

See Figs. 8, 9, 10 and 11.
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Fig. 8  Parameter plots for chains for all iterations. The dashed line indicates the MCMC burn-in phase at 500 iterations
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Fig. 9  Parameter plots with all chains for all iterations. The dashed line indicates the MCMC burn-in phase at 500 iterations
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Fig. 10  Histograms of MCMC samples for each parameter. The parameter value with maximum probability is indicated as red solid line; the mean 
and the standard deviation is indicated with a blue solid and dashed line, respectively
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Fig. 11  Histograms of MCMC samples for each parameter. The parameter value with maximum probability is indicated as red solid line; the mean 
and the standard deviation is indicated with a blue solid and dashed line, respectively
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