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Abstract

In this paper we address the problem of testing complex computer models for
infrastructure protection and emergency response based on detailed and realistic
application scenarios using advanced computational methods and tools. Specifically,
we focus here on testing situation analysis decision support models for marine safety
& security operations as a sample application domain. Arguably, methodical
approaches for analyzing and validating situation analysis methods, decision support
models, and information fusion algorithms require realistic vignettes that describe in
great detail how a situation unfolds over time depending on initial configurations,
dynamic environmental conditions and uncertain operational aspects. Meaningful
results from simulation runs require appropriate test cases, the production of which
is in itself a complex activity. To simplify this task, we introduce here the conceptual
design of a Vignette Generator that has been developed and tested in an industrial
research project. We also propose a framework for composing vignettes from
reusable vignette elements together with a formal representation for vignettes using
the Abstract State Machine method and illustrate the approach by means of various
practical examples.

Keywords: Marine Safety & Security, Test Case Generation, Infrastructure Protection,
Emergency Response, Abstract State Machines

1 Introduction
Infrastructure protection and emergency response scenarios routinely call for intelli-

gent coordination and management of multiple mobile resources, often operating in

vast geographical environments. For instance, mobile platforms including patrol and

cargo airplanes, rescue helicopters, unmanned aerial vehicles (UAV), satellites, ground

vehicles, and search & rescue (SAR) vessels are deployed for the gathering of informa-

tion that is crucial for situation analysis and for the transportation of persons and sup-

plies. Typical scenarios include: intervention by border control services in illegal

activities, such as smuggling operations and piracy; routine surveillance and SAR mis-

sions conducted by coast guard services; as well as emergency services and first

responders in disaster relief operations, for instance, after a major earthquake with a

devastating tsunami or a catastrophic oil spill. Marine safety & security is critical for

Canada to address the vulnerability of its sea lanes, ports and harbors to a variety of

threats and illegal activities. Scarce surveillance and tracking capabilities make it diffi-

cult to keep track of all marine traffic across the length of Canada’s coastline, which

totals over 243,000 kilometres [1]. A coordinated response to emergency situations,
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like many safety and security operations, frequently involves a number of mobile

agents, cooperatively performing missions and reacting to events that are distributed in

time and space.

Situation Analysis (SA) is viewed as a process to provide and maintain a state of

situation awareness for the decision maker [2]. Situation awareness is essential for

decision-making activities: it concerns our perception of the elements in the environ-

ment, the comprehension of their meaning, and the projection of their status in the

near future [3]. Computational models of situation analysis processes are in many

cases of a distributed nature, being composed of multiple autonomously operating

agents that each react in an asynchronous manner to discrete events distributed in

space and time. Agents cooperate in developing a global understanding of a situation

as it unfolds by exchanging information related to their local perception of events.

Computer models support risk assessment and disaster response planning in the study

of emergency preparedness by providing a practical alternative to real-world experi-

ments, which in many cases are so costly and disruptive when performed on real situa-

tions that they do not provide a viable option.

This paper addresses the problem of testing complex computer models of infrastruc-

ture protection and emergency response situations based on detailed and realistic

application scenarios in order to analyze and validate such models by means of

advanced computational methods and tools. Although the primary focus in this paper

is on marine safety & security operations [4,5], we contend that the same approach

carries over to a much broader scope of application fields. This is due to two facts:

1) the concepts proposed here build on general abstractions of distributed systems

composed of multiple mobile agents; and 2) the way use cases are formally specified as

abstract models of vignettes [6] in terms of state machines [7].

Methodical approaches to analyzing and testing decision support systems, situation

analysis methods, and information fusion algorithms require realistic vignettes describ-

ing in great detail how use cases unfold depending on initial conditions for the config-

uration of agents, environmental aspects, and operational aspects. For instance, this

includes the type and placement of agents in the geographic environment, their physi-

cal and operational capabilities, and their anticipated trajectories; specifics about envir-

onmental conditions, including weather, daylight, and water currents; and background

noise, such as the number and distribution of neutral entities like any unrelated marine

traffic. Realistic scenarios may include dozens or even hundreds of agents and complex

conditions to be considered for each individual instance of a given vignette. Generating

vignettes is a complex activity, one that is utterly inefficient to do manually and thus

benefits greatly from automatic or semi-automatic approaches with tool support. We

present here the conceptual design of a vignette generator to address this problem.

This paper is structured as follows. Section 2 outlines the problem scope, explains

fundamental concepts and also the main goals of generating vignettes. Section 3

explains the compositional framework proposed for generating and/or composing vign-

ettes out of reusable vignette elements. Section 4 discusses the conceptual design,

including the main requirements, and the architecture of the system. Section 5 illus-

trates the underlying formalization approach for vignettes based on the abstract state

machine method by means of common examples. Section 6 discusses applications and

benefits of the Vignette Generator. Section 7 concludes the paper.
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2 Fundamental Concepts
This section introduces the problem scope, some basic terminology, vignette patterns,

and fundamental concepts used for describing the Vignette Generator in subsequent

sections.

2.1 Problem Scope

Detailed experimental studies of emergency scenarios by means of computer simula-

tion and animation play a crucial role in the development of innovative ICT solutions

for situation analysis and decision support [6,8-10]. Furthermore, they are gaining

momentum as a viable alternative to performing experiments in a real-world setting

because of the inevitable limitations of any large-scale real-world experiment. Scenarios

explored in the work presented here deal with operations performed by Marine Secur-

ity Operation Centres (MSOC) [11]. This includes SAR operations for passengers and

vessels in distress, as well as the protection of sea lanes, ports and harbors against

threats and illegal activities. The increasing volume of marine traffic [12] calls for

advanced computer-based systems to support MSOC personnel in their daily missions

by automating routine coordination tasks, and building on common surveillance tech-

nologies such as the Automated Identification System (AIS) [13]. For this purpose, it is

essential to analyze scenarios, evaluate algorithms and assess the quality of solutions

systematically by performing in-depth experimental studies based on realistic and

meaningful test cases with a degree of detail beyond what could be done manually.

The approach for the generation of test cases proposed here assumes interactive devel-

opment, analysis and validation of complex vignettes for testing realistic scenarios.

2.2 Basic Terminology

We define the following basic terms to disambiguate the concepts of domain, scenario,

vignette, vignette specification, and vignette element [6].

Domain Model

A domain model is a conceptual model of a given problem domain, defining the var-

ious types of entities that are relevant for this domain, their attributes, relationships,

constraints, and behaviors.

Scenario

A scenario is a specific interpretation of a domain model for a given geographical area

and time period. For instance, a marine safety & security scenario may refer to the

Straight of Georgia between Vancouver Island and the mainland of British Columbia

in the current time.

Vignette

A vignette, denoted by V in this paper, is a story embedded in a scenario. The story

unfolds as a set of discrete events involving agents and the physical environment in

which they operate, describing the distribution of agents and events in time and space.

For instance, a smuggling operation in the Straight of Georgia, off the northern shore

of Vancouver Island, can be described as a vignette embedded in a marine safety &

security scenario.

Vignette Specification

A vignette specification is a precise and structured, static, text-based description of a

vignette.
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Vignette Element

A vignette element, denoted by E in this paper, is any identifiable part of a vignette

specification.

Vignette Generator

The term vignette generator refers to a tool for generating vignette specifications based

on vignettes.

A vignette specification generated by a vignette generator conceptually represents a

state machine model that can be interpreted by a simulation environment to produce

simulation runs.

2.3 Vignette Patterns

Vignette elements are basic building blocks for constructing vignettes and therefore

vignette specifications. They usually have parameters that allow adjustment for a given

target context. Vignette elements can be considered as reusable patterns in the context

of marine safety & security. These four patterns serve as examples:

- White Traffic Area Pattern: In this pattern, there are a number of neutral agents

(e.g., Fishing Boats) that are moving randomly within a specified area. Such

agents are considered part of the background, and referred to as “white traffic”

(see Figure 1(a)).

- Routine Patrolling Pattern: In this pattern, an agent with the ability to visually

capture the environment (e.g., a Helicopter or UAV) moves within a predefined

path and provides environmental information for other agents (see Figure 1(b)).

Figure 1 (a) White-Traffic Area Pattern, (b) Routine Patrolling Pattern, (c) Rescuing Pattern, (d)
Rendezvousing Pattern, (e) Composite Vignette.
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- Rescuing Pattern: In this pattern, there is an agent (e.g., a Fishing Boat) in a dis-

tress situation. Coast guard rescue team (e.g., a Helicopter) tries to rescue the peo-

ple involved and also secure the trapped agent (see Figure 1(c)).

- Rendezvousing Pattern: This pattern involves a larger vessel, like a Cargo Ship,

and a number of smaller boats, like Zodiacs. The bigger vessel stays at a fixed loca-

tion (the Rendezvousing Point), while the smaller vessels go back and forth

between the rendezvousing point and possibly a location close to the shoreline (the

Beach Point). Figure 1(d) illustrates a rendezvousing pattern for a cargo ship and

two zodiacs.

- Any combination of these vignette elements can be considered for generating a

composite target vignette. Figure 1(e) is an example of a combination of all four

vignette elements.

2.4 The Vignette Generator

As already mentioned, the Vignette Generator is a tool for developing well-defined

vignettes and systematic generation of vignette specifications. Arguably, using a vign-

ette generator has a number of decisive advantages as it makes vignette specification

much easier, more time efficient, and less error prone. That is, users will be freed from

the complicated and tedious task of describing low-level details and repeating routine

activities. In particular, it allows the automatic generation of statistically relevant test

cases as variations of vignette specifications that can be derived from a convenient

high-level specification. The following simple example illustrates the role of the Vign-

ette Generator for defining the White Traffic Area Pattern.

Example 1

We need to specify 100 Fishing Boats within a given area, each equipped with a

Communication Device with certain properties. A traditional approach, would have to

define each Fishing Boat separately as follows:

WhiteTrafficArea

FishingBoat-1

Position(X, Y) = (x-1, y-1)

CommunicationDevice-1

Type = link-11

Range = 5000 m

.

.

.

FishingBoat-100

Position(X, Y) = (x-100, y-100)

CommunicationDevice-100

Type = link-11

Range = 3000 m

In our proposed approach and tool, the vignette element (White Traffic Area Pat-

tern) is described as follows:
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WhiteTrafficArea

#number = 100

FishingBoat

Position(X,Y) = #random value within area A1

CommunicationDevice

Type = link-11

Range = #random value between (2000 m) and (5000 m)

#: These elements and values are processed by the Vignette Gen-

erator engine.

Advantages

In the first specification, the details are constructed manually. In the second, the

Vignette Generator will produce these details automatically. From the example, it is

clear that the proposed approach has the following benefits.

1. Defining and understanding the second specification (7 lines) is much easier than

the first one (501 lines).

2. Generating vignettes (or vignette elements) is more time efficient, specifically

when the user needs to generate a number of vignette specifications based on a com-

mon pattern. This helps with statistical tests, which are necessary for evaluating

algorithms.

3. Any error in the second specification is much easier to find and fix than in the

first specification.

3. Vignette Composition Framework
In this section, we propose a framework for composing a new Vignette Element Type

(ET ) from a set of existing vignette element types.

Initial Type Set (I ) is defined as a set of initial types which are the fundamental

building blocks for composing new ET s. Although I can be extended if required, its

suggested elements are as follows:{
Angle, Boolean, DateTime, DeltaTime, Energy, Length,

Real, Speed, String, Temperature, Volume, Weight

}
∈ I

Vignette Element Type (ET ) is considered as a building block for generating a

vignette or another ET . Each ET has name, type, and also a set of ET s as its

attributes.

Example 2

Before explaining our approach in detail, we illustrate the idea by means of a simpli-

fied ET , the CH-149 Helicopter. CH-149 is a helicopter which has the attributes listed

below. For instance, OpticalSensor ET is one of its attributes that in turn identifies

specific attributes for this sensor element.

CH-149: Helicopter

Height: Length

Width: Length

Length: Length
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FuelCapacity: Volume

CruisingVelocity: Speed

MaximumVelocity: Speed

Communication: CommunicationDevice

Frequency: Real

Range: Length

Bandwidth: Real

OpticalSensor: SensorDevice

SamplingPeriod: DeltaTime

Range: DeltaTime

A generated composite ET can be stored in a repository named Vignette Repository

(R ) for future use. Figure 2 illustrates a simple example of R .

Vignette Element Types (ET ) and Vignette Elements (E ): We have defined Vignette

Elements as identifiable parts of a vignette or vignette specification; also, they are con-

sidered as instances of Vignette Element Types. Thus, in order to include a Vignette

Element in a vignette, we have to instantiate the appropriate ET , and then assemble it

on the target vignette (see Section 3.1 for details).

3.1 Composition Mechanisms

Composition mechanisms are proposed with the purpose of creating new ET s and E s.

These mechanisms are categorized in two different sets. The first set, ET -related

mechanisms, is used to generate new composite Vignette Element Types from existing

ET s in R . The second set, ET /E -related mechanisms, is used to generate Vignette

Elements from appropriate ET s.

- ET Mechanisms

- Extending: Adding a Vignette Element Type et’ to an existing element type et

as its attribute.

Figure 2 Example of the Element Repository (R ).
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- Initiating: Creating a new Vignette Element Type et’ as a sub-type of another

element type et.

- Cloning: Cloning an existing Vignette Element Type et with a different name

et’.

- Tuning: Adjusting the value of the attributes of an existing ET .

- ET /E Mechanisms

- Instantiating: Creating an E as an instance of ET , and tuning all of its

attributes.

- Assembling: Adding an instantiated E to the target vignette V , and therefore

vignette specification.

All in all, a Vignette V is a set of Vignette Elements E s which are instances of

Vignette Element Types ET s (see Figure 3).

3.2 Relationships between Vignette Element Types

Two different types of relationships are defined among ET s:

- Has-a Relationship: Each ET can have a number of ET s as its attributes.

- Is-a Relationship: ET s can have hierarchical relationships. In this way, each ET
has a super-type (except for the root element). All sub-types of an ET inherit all

Figure 3 Example of a Hybrid Composition Mechanism.
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has-a relationships from their super-type. However, they are able to override these

inherited relationships. For example, if an ET (et1) has-a ET (et2), all sub-types of

et1 will have et2. By this approach, we prevent redundancies in defining ET s and

their relationships. Moreover, it helps to maintain the ET s in a more efficient way.

Since the number of Vignette Element Types can increase considerably over time,

these relationships help in organizing them within the repository.

Example 3

The composition of a Routine Patrolling Pattern (Figure 1(b)) and Rendezvousing

Pattern (Figure 1(d)) is illustrated here. By applying the following steps, we can gener-

ate the composed vignette. Assume that we already have CargoShip, Zodiac, and UAV

ET s in the repository.

1. Initiate Routine Patrolling Pattern ET as a subtype of root ET .

2. Extend Routine Patrolling Pattern ET with a UAV ET .

3. Initiate Rendezvousing Pattern ET as a subtype of root ET .

4. Extend Rendezvousing Pattern ET with a CargoShip ET .

5. Extend Rendezvousing Pattern ET with two Zodiac ET s.

6. Tune the trajectory attributes of the CargoShip and Zodiac ET s.

7. Instantiate Routine Patrolling Pattern ET and Tune all of its attributes to generate

Routine Patrolling Pattern E .

8. Instantiate Rendezvousing Pattern ET and Tune all of its attributes to generate

Rendezvousing Pattern E .

9. Assemble Routine Patrolling Pattern E and Rendezvousing Pattern E into a new

current vignette (V ).

4. Conceptual Design
This section discusses the conceptual design of the Vignette Generator, including the

system requirements and high-level architecture.

4.1 System Requirements

The requirements of the Vignette Generator outlined here were elicited and analyzed

in part through discussion with domain experts. Afterward, high level requirements

were identified and classified into different categories. For each category, the most sig-

nificant lower level requirements were explored and discussed.

1. Flexible support for a variety of vignettes: The Vignette Generator should support

definition of different vignette elements, with fixed or variable characteristics, that

can be reused and combined in creating vignette specifications.

a) The ability to easily specify a set of vignette elements implicitly by specifying

a vignette element together with a set of parameters. The Vignette Generator

should then automatically generate an explicit set.

- Example: In the White Traffic Area Pattern (Figure 1(a)), the user can spe-

cify a single concrete Fishing Boat (an existing vignette element from the

repository), and set a few parameters such as the number of boats desired

and an area. Then the Vignette Generator produces a specification with that
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many boats distributed over this area, moving about in a certain manner.

The parameter varied is the initial trajectory of each boat (see Example 1).

b) The ability to aggregate, name, store, and retrieve previously defined vignette

elements in a systematic way.

- Example: A new vignette element with some specific features and attri-

butes can be given a name, e.g., CH-149 Helicopter, and stored in the repo-

sitory. Later on, we should be able to reuse the stored element as is or

extend it for other uses.

- Example: The White Traffic Area Pattern and the Rendezvousing Pattern

(Figure 1) can be stored in the repository, and reused to compose a new

complex vignette.

c) The ability to expand the repository of vignette elements over time which

leads to the gradual generation of more and more complex vignette elements

and vignettes.

2. Support for non-determinism: The user should be able to abstract away from the

detailed configuration of vignette elements through non-deterministic value assign-

ments to the attributes of vignette elements.

a) The ability to easily specify a set of vignette elements from which the genera-

tor picks one at random.

- Example: If Aircraft is specified, the generator randomly substitutes one of

the concrete platforms that is a subtype of Aircraft, such as the CH-149

Helicopter (Figure 2).

- Example: In a traffic area that we have a number of platforms which have

communication devices, the generator randomly assigns one of the concrete

communication devices that is a subtype of Communication (Figure 2).

b) The ability to easily specify parameterized (unfixed) values (e.g., randomly,

from a range or distribution) for attributes of vignette elements.

- Example: The value of Velocity attribute of CH-149 Helicopter should be

selected randomly from a range between X and Y (X ≥ Velocity ≥ Y).

3. Validation of high-level vignettes: The Vignette Generator should allow validation

of scenario descriptions against domain-specified and user-defined sets of

constraints.

a) The ability to automatically check for errors, inconsistencies, policy and best-

practice violations, and omissions.

- Example: The generator should issue warnings for integrity violations such

as inconsistent behavior, e.g., ships traveling over land or the use of com-

munication equipment that is incompatible with all others.

b) The ability to automatically check for user-defined constraints. The Vignette

Generator should issue warnings for any violations.

- Example: The value of the Altitude attribute of all Aircraft should be

between a minimum and a maximum value; otherwise, the system should

report a warning. (X ≥ Altitude ≥ Y).

4. Production of concrete vignette specifications for different simulation environ-

ments: From every abstract vignette that complies with the requirements of a given

simulation environment, the Vignette Generator should be able to generate a num-

ber of concrete vignette specifications in a specified format (e.g., XML) that can be
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loaded in the simulation environment. To this end, the engine of the Vignette

Generator should not depend on any specific simulation environment. This

requirement is useful for generating vignettes for different simulators or even a

simulator under construction.

5. Easy to use Graphical User Interface (GUI): The Vignette Generator should come

with an easy to use GUI, which supports the creation, modification, and instantia-

tion of vignette elements.

4.2 System Architecture

To address the mentioned functional and non-functional requirements, we propose a

two-layer architecture (see Figure 4).

- Simulator Independent Layer: This layer is responsible for composing a new vign-

ette based on Vignette Element Types and Vignette Elements. The output is not

executable and needs to be transformed into the required format. The two main

components of this layer are the map manager and the repository manager.

Figure 4 Vignette Generator Architecture.
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- Simulator Dependent Layer: This layer transforms the output of the simulator

independent layer into a format that can be processed and executed by the simula-

tion environment. The main component of this layer is the transformation

manager.

- Vignette Repository: The vignette repository is a knowledge base for storing all

information about the ET s, their attributes and relationships.

- Transformation Rules: Transformation rules which are used by the simulator

dependent layer are stored here.

5 Formal Representation
Based on common concepts of computational logic and discrete mathematics, we for-

malize vignette specifications as abstract state machine (ASM) models [7,14]. Abstract

state machines are known for their versatility in modeling semantic properties of algo-

rithms, architectures, languages, protocols, and virtually all kinds of sequential, parallel

and distributed systems. Building on an abstract machine framework has a number of

advantages for defining structural and behavioral properties of vignettes, and the com-

position of simple and complex vignette elements so as to form complex structures.

5.1 Abstract State Machines and CoreASM Tool Environment

This section briefly presents the basic modeling concepts of Abstract State Machines

and the CoreASM modeling framework for simulation and analysis of ASM

specification.

5.1.1 Abstract State Machines

The ASM method [7] is a versatile mathematical framework for modeling virtually all

kinds of discrete dynamic systems, including sequential, parallel and distributed sys-

tems, at any desired level of abstraction with a noticeable orientation toward practical

applications. Building on common and widely used concepts from discrete mathe-

matics and computational logic, it combines abstract states with transition systems.

Abstract state machines are known for their semantic foundations for architectures,

languages, and protocols, including some of the most prominent ones such as Java,

SDL, and VHDL [15-20].

We use here an asynchronous ASM computation model, i.e., Distributed Abstract

State Machine (DASM), with a non-empty set of autonomously operating computa-

tional agents. This set can change dynamically over machine runs so as to model a

varying number of computational resources. The asynchronous computation model of

DASM defines concurrent and reactive behavior, as observable in distributed computa-

tions performed by autonomously operating computational agents, according to the

underlying semantic model. Depending on the agent type, agents have different

dynamic properties as defined by their ASM program. Agents interact with each other

and their operational environment by reading and writing shared locations of global

machine states, represented as first-order structures [21] in terms of sets and opera-

tions defined thereon. Agents access and manipulate machine states as described by

the transition rules that form their program. The underlying semantic model resolves

potential conflicts according to the definition of partially ordered runs [7].
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5.1.2 The CoreASM Extensible Architecture

CoreASM [14,22] is an Open Source project and tool suite for rapid proto-typing, ana-

lysis and experimental validation of ASM models. The tool suite provides a platform-

independent execution engine and a GUI for interactive visualization and control of

simulation runs. Building on an extensible plugin-based architecture [23], the Cor-

eASM kernel (the core of the language and engine) contains only bare essentials; most

of the language constructs and functionalities of the engine come in the form of plu-

gins extending the kernel [24].

There are two flexible mechanisms for extending CoreASM. Plugins can either

extend the functionality of specific engine components (such as the parser or the sche-

duler), introducing additional data or behavior to those components, or they can

extend the control flow of the engine by interposing their own code in between state

transitions of the engine. This extensibility offers a great deal of flexibility for custo-

mizing CoreASM depending on specific application needs.

Over several years, CoreASM has been put to the test in a range of R&D applications

in commercial enterprises and government agencies, spanning computational criminol-

ogy, coastal surveillance, SA, decision support systems, and Web services. CoreASM is

implemented in Java under Academic Free License version 3.0 (AFL 3.0), providing a

sensible compromise between public availability of the original source code and the

existence of proprietary extensions for commercial applications. It is readily available

at www.coreasm.org.

5.2 ASM Models of Vignettes

Intuitively, a vignette corresponds to an abstract machine program, and a vignette

execution corresponds to an abstract machine run. Specifically, we use the asynchro-

nous computation model of distributed abstract state machines, defined in terms of

autonomously operating computational agents interacting with each other and their

operational environment (the external world) by reading and writing locations of glob-

ally shared states. Potential conflicts are resolved by the underlying semantic model of

partially ordered runs (see [7] for details).

Figure 5 illustrates a sample ASM model for a Rendezvousing Pattern between two

agents at a high level of abstraction. The rendezvousing operation described here

assumes that agent A1 is a larger stationary vessel (for instance, a cargo ship), while A2

is a smaller boat going back and forth between A1 and a beach location to load and

unload smuggled goods. The operation Rendezvousing(..) specifies the decomposition

of a vignette into its constituent elements, expressing how A1 and A2 move to the off-

shore rendezvousing point and start the loading and unloading process. Exact coordi-

nates for the rendezvous location and the beach point, as well as the detailed trajectory

of A2, are to be determined at runtime by the simulator executing the vignette.

A sample ASM model for a Rescuing Pattern among three agents is shown in

Figure 6. In this SAR operation, a helicopter agent A2 first searches and then identi-

fies the location of the fishing boat agent A1 in a distress situation. After locating

the fishing boat, a coast guard vessel agent A3 first extracts persons from the fishing

boat and then secures the boat. The operation MoveAgent(..) is defined in the Ren-

dezvousing example.
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Figure 5 ASM model of a Rendezvous Pattern between two agents A1, A2 in Territorial Sea (a belt
of coastal waters extending from the baseline of a coastal state): A1 is of type CARGOSHIP and A2
is of type ZODIAC.

Figure 6 ASM model of Rescuing Pattern among three agents in Territorial Sea: Agent A1 is of type
FISHINGBOAT, A2 is of type HELICOPTER, and A3 is of type COASTGUARDBOAT.
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6 Applications
An operational prototype of the Vignette Generator has been designed and developed

in Java based on the concepts presented in this paper. It is capable of generating a

wide spectrum of vignette specifications for the INFORM Lab simulation environment

(see Section 6.1.2). A screenshot of the Vignette Generator illustrating a complex SAR

scenario is illustrated in Figure 7.

The Vignette Generator has the potential to interoperate with different simulation

environments, namely those for which the corresponding interface configuration for-

mat is determined, due to the following features:

- Composable Vignette Element Type: Vignette V is generated from ET s forming

the basic building blocks. So, new ET s can be generated based on existing ones at

run-time, which means that R is flexible enough that users can easily extend the

set of ET s, and consequently R .

- Separated Transformation Layer at the Architecture Level: Generating a vignette

V from high-level abstract ET s, and transforming V into an executable format

(for the simulation environment) are separated into two different architectural

layers. The input format of the simulation environment is irrelevant for the compo-

sition of ET s and E s. This way, the two-layer architecture enhances of the port-

ability of the Vignette Generator.

Therefore, we are able to generate various vignettes by instantiating ET s with less

consideration of the input format required by a specific simulation environment. We

have designed the Vignette Generator such that it can provide different simulation

environments with appropriate inputs without significant modifications. In the follow-

ing section, realistic applications of the tool are discussed.

Figure 7 A Screenshot of a Map-Based Scenario Representation in the Vignette Generator.
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6.1 Generating Application Domain Vignettes

A detailed sample scenario, including a number of related vignettes, serves to illustrate

the functionality of the proposed Vignette Generator. The generated vignettes, which

can be executed in the INFORM Lab simulation environment, are based on the sample

scenario presented in Section 6.1.1. In this scenario two different kinds of vignettes are

presented: cooperative search, such as locating a fishing boat in distress, and non-

cooperative search to detect and prevent illegal activities (for instance, smuggling

operations).

6.1.1 Sample Scenario and Vignettes

Consider a simulation of maritime activities near Vancouver Island, B.C., Canada on

December 26, 2011 between 6:30 AM and 7:30 AM. These maritime activities include

the following events and stories:

- December 26, 2011 - 6:30 AM:

- Routine patrolling of Vancouver Island’s coastal region by coast guard vessels

and helicopters.

- Monitoring the maritime environment through satellite images.

- December 26, 2011 - 6:45 AM:

- Receiving a rescue request from a fishing boat in a distress situation with an

approximate reported location southeast of the Gulf Islands in the Strait of

Georgia between Vancouver Island and the mainland of British Columbia.

- December 26, 2011 - 6:50 AM:

- Observing suspicious offshore activities between a cargo ship and one or more

small boats (zodiacs) roughly 50 kilometres northwest of Port Hardy at the

northern end of Vancouver Island.

- December 26, 2011 - 7:00 AM:

- Searching and rescuing the passengers of the fishing boat and securing their

boat as a cooperative SAR mission.

- December 26, 2011 - 7:10 AM:

- Analyzing the suspicious offshore activities by a coast guard helicopter con-

firms the suspicion of a smuggling operation in progress.

- In addition to these vignettes, there are also a number of fishing boats, sailing

boats, cargo vessels, passenger vessels, and tankers operating in the area of interest.

Since one of the main purposes of the Vignette Generator is to test different situa-

tion analysis methods and information fusion algorithms, considering such “back-

ground traffic” is necessary to produce realistic noise, say for testing offshore

smuggling operation detection algorithms under realistic conditions.

The following four vignettes are elicited from these stories:

1. Routine patrolling and monitoring of the coastal regions of Vancouver Island by

coast guard vessels, helicopters, and satellites (see Figure 8(a)).

2. Searching and rescuing a fishing boat in a distress situation by coast guard vessels

and SAR helicopters (see Figure 8(b)).

3. Observing and detecting suspicious activities between a cargo ship and two zodiacs

(see Figure 8(c)).
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4. Random movements of various types of smaller boats and larger vessels in a mari-

time environment (see Figure 8(d)).

Combinations of the above high-level vignettes (instantiated with a number of non-

deterministically chosen parameter values) can be defined in the Vignette Generator.

As a result, one can easily generate a number of concrete instances of these vignettes

as input for the INFORM Lab simulation environment. Figure 9 presents a screenshot

from the INFORM Lab simulation of a concrete instance of the vignette shown in

Figure 7.

The examples described here are well founded in real-world situations and have been

examined thoroughly and validated by domain experts. However, it is important to

note that they describe a situation at a very local scale. More complex vignettes can

involve hundreds of agents and platforms, as well as numerous distinct behaviors. The

Vignette Generator is fully capable of handling vignettes of high complexity and large

scale, but a full description of such a comprehensive example would be outside of the

scope of a journal article.

6.1.2 INFORM Lab Simulation Environment

INFORM Lab, designed and developed at MDA Corporation, Richmond, B.C., Canada,

is an advanced agent based simulation framework built around the OODA paradigm

(Observe, Orient, Decide, Act) [8]. It is used to simulate Coastal Wide Area Surveil-

lance applications, including SAR and detection of illegal activities (see Figure 9).

Figure 8 Sample Vignettes from the Vignette Generator (a) Routine Patrolling: Coast guard vessels,
helicopters, and satellite images are used to patrol and monitor the area of interest; (b) Search
and Rescue: A fishing boat in a distress situation is located southeast of the Gulf Islands in the
Strait of Georgia, and a coast guard vessel and a helicopter are performing SAR operation; (c)
Rendezvousing: Suspicious offshore activities between a cargo ship and two zodiacs are observed
roughly 50 kilometres northwest of Port Hardy; (d) Traffic Area: There are a number different kinds
of vessels (including fishing boats, sailing boats, passenger vessels, cargo vessels, and tankers)
operating in the area of interest.
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It allows experimentation with higher-level distributed dynamic information fusion,

distributed dynamic resource management, communication strategies, and configura-

tion management given multiple constraints on resources and their communications

networks. So, it can be considered as a testbed which also allows the evaluation of sen-

sing strategies, motion strategies, and a range of control strategies from independent

agent operation through various levels of agent collaboration.

The INFORM Lab simulator is driven by a configuration specification file that speci-

fies the agents and their relationships, the environment, initial conditions as well as

any scripted events. Setting up this file can be time-consuming, difficult and error

prone. However, being a testbed, INFORM Lab requires that statistically relevant

metrics can be extracted from the results. This means that many small variations of an

experiment need to be run. Specifying this in a convenient, systematic, and error-free

manner would be a huge task without a vignette generator. The Vignette Generator

can provide the required variability of the experiments with great convenience and is

time-saving for the experimenter.

6.2 Anomaly Detection

Related to the work presented here is a research project on a model-driven framework

for engineering Situation Analysis Decision Support (SADS) systems for the domain of

marine safety & security [25,26]. SADS system engineering practices call for systematic

formal modeling approaches to manage complexity through modularization, refine-

ment and validation of abstract models. In this light, we explore SADS system design

based on ASM modeling techniques paired with CoreASM tool support to facilitate

analysis of the problem space and reasoning about design decisions and conformance

criteria so as to ensure they are properly established and well understood prior to

Figure 9 A Screenshot of the INFORM Lab’s Simulator: Detection of a Smuggling Operation in the
Strait of Georgia at the northern peak of Vancouver Island.

Shahir et al. Security Informatics 2012, 1:4
http://www.security-informatics.com/content/1/1/4

Page 18 of 21



building the system. We provide an extension to CoreASM for the marine safety &

security domain, Specifically for capturing rendezvous scenarios. The extension yields

the necessary background concepts, such as mobile sensors and shipping lanes, and

offers runtime visualization of simulation runs together with an analyzer to measure

success of various rendezvous detection strategies used in the model. The proposed

framework complements purely analytical means that focus on verification of internal

properties, such as consistency and completeness of a model, and provides a sensible

way of linking formal and empirical aspects in the model-driven engineering of SADS

systems. Experimental studies of SA scenarios can considerably enhance our insight

into intricate system dynamics and simplify the challenging task of deriving meaningful

conformance criteria for checking the validity of SADS domain models against estab-

lished operational concepts of marine safety & security. We illustrate the application of

the proposed approach using sample rendezvous scenarios (see [25] for a detailed sce-

nario description and results). Work in progress is now extending the scope of our

SADS model to capture a much wider range of observable behaviors of marine traffic

that deviate from what is considered normal. This work aims at integrating model-dri-

ven approaches with data-driven approaches of behavior detection into a hybrid detec-

tion framework operating on real-world data sets.

6.3 General Benefits of Using the Vignette Generator

- Ease of Use: Graphical user interface facilitates manipulation of the repository and

the transformation rules, and helps users to generate appropriate test cases.

- Reusability: By gradually building a repository of ET s, we are able to reuse the

defined ET s in future applications.

- Compositionality: By using the proposed composition mechanisms, we are able to

generate increasingly more complex ET s and V s by combining and orchestrating

existing ET s.

- Complexity Management: The hierarchical structure of the repository reduces the

complexity of generating vignettes. Low-level details for an ET need only be

defined once and can then be reused. Further, a composite ET hides the low-level

details of its internal elements without preventing access to them.

- Incremental Improvement: Over time, generating complex vignettes becomes

increasingly efficient as the repository grows, offering more and richer choices.

7 Conclusion and Future Work
This paper addresses a notorious problem in testing computational models for infra-

structure protection and emergency response by means of simulation and animation

using realistic scenarios. Simulation plays a key role for analyzing decision support sys-

tems, situation analysis methods, and information fusion algorithms. Considering their

inherent complexity, the validity of realistic models need to be established through

progressive comprehension of the real-world phenomena being studied. This can be

done by gradually improving the applied methods in an interactive manner. However,

such improvements are virtually impossible without preforming in-depth experiments.

Furthermore, manual generation of meaningful vignettes is tedious and cumbersome,

Shahir et al. Security Informatics 2012, 1:4
http://www.security-informatics.com/content/1/1/4

Page 19 of 21



and generating such vignettes even in an automatic or semi-automatic fashion is a

complex and challenging engineering task.

We have presented the conceptual design for a vignette generator to overcome this

problem, and described its high-level requirements and architecture in detail. Further,

we have illustrated a formal approach to vignette specification in terms of a sample

vignette, building on well-defined composition mechanisms. As justified in the paper,

the proposed design ensures basic quality attributes, including flexibility, extensibility,

reusability, scalability, and portability. Practical experience has been gained from using

the Vignette Generator with the INFORM Lab simulation environment at MDA Cor-

poration for developing situation analysis decision support models. Generating vign-

ettes for marine safety & security scenarios undeniably helps developers to test and

evaluate their algorithms. It also helps end-users to simulate and analyze real-world

situations. Arguably, the scope of potential applications of the Vignette Generator pre-

sented here extends far beyond the domain of marine safety & security operations as

many central concepts directly carry over to a much broader range of infrastructure

protection and emergency response scenarios.
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