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Abstract

This paper adopts the metaphor of representational fluency and proposes an auto linking approach to help analysts
investigate details of suspicious sections across different cybersecurity visualizations. Analysis of spatiotemporal
network security data takes place both conditionally and in sequence. Many visual analytics systems use time series
curves to visualize the data from the temporal perspective and maps to show the spatial information. To identify
anomalies, the analysts frequently shift across different visualizations and the original data view. We consider them as
various representations of the same data and aim to enhance the fluency of navigation across these representations.
With the auto linking mechanism, after the analyst selects a segment of a curve, the system can automatically
highlight the related area on the map for further investigation, and the selections on the map or the data views can
also trigger the related time series curves. This approach adopts the slicing operation of the Online Analytical Process
(OLAP) to find the basic granularities that contribute to the overall value change. We implemented this approach in an
award-winning visual analytics system, SemanticPrism, and demonstrate the functions through two use cases.
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Introduction
One of the biggest challenges the information secu-
rity society faces is analyzing large-scale spatiotempo-
ral datasets. In most organizations and companies, their
computer networks are routinely capturing huge volumes
of historical data describing the network events. Most of
these events are recorded as spatiotemporal data because
every event takes place at a certain time and in a certain
location. The location could be either a physical loca-
tion (e.g., an office) or a virtual space (e.g., an Internet IP
address) [1]. Different kinds of events have more detailed
information, such as operations, products, targets, and
human involvement, which can add more dimensions to
the spatiotemporal database. As a result, such a dataset is
usually both high-dimensional and very large.
Peuquet [2] identified three components in spatiotem-

poral data: space (where), time (when), and objects (what).
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Foresti et al. [3] also labeled when, where, and what (W3)
as the three attributes of cybersecurity alerts and events
because of their very nature. According to their defini-
tions, when refers to the point in time where the event
happened, where to the location of the event that hap-
pened, and what to the type of the event. The space
of what and where are finite, and the when space is
semi-infinite [3]. Finding the relations among these com-
ponents and answering related questions are essential to
analysis [4].
The two most popular methods to visualize and ana-

lyze the cybersecurity spatiotemporal data are geospatial
visualization and time series curves. (1) The geospatial
visualization is usually integrated with a time slider to
adjust the time frame. The high-dimensional data are
often displayed on the geospatial map with multiple views
and layers overlaid with numerous data points, connec-
tions, and details. The visualization can easily overwhelm
the display space on a single monitor. These types of visu-
alizations challenge human cognition to remember what
was seen previously, where it was, and its potential rela-
tionship to current information [5]. (2) The time series
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curves focus on providing the analyst an overview of how
the data change over time. Significant value changes can
be clearly reflected on the curve as peaks or valleys, which
hint for the analyst to pay attention to these significant
situations. This type of visualization is clean and easy to
read, but it skips the context of spatial information.
In a survey of cybersecurity visualization techniques,

Shiravi et al. [6] argued that user experience should be
one of the key issues a successful visual analytics system
should consider. The user experience is not only about ele-
gant appearance or powerful functions, but also, andmore
importantly, about a smooth and fluent analysis process.
Heer and Shneiderman also stressed that “visual analytics
tools must support the fluent and flexible use of visualiza-
tions at rates resonant with the pace of human thought”
[7]. However, in most cases the complex data and multiple
visualizations lead to poor user experience.
This paper aims to promote the fluency of navigating

in the spatiotemporal visualizations and to enhance the
user experience of cybersecurity analysis. It demonstrates
a solution to link the time series curves, geospatial visu-
alizations, and data views together and to help the user
achieve situational awareness through comprehension of
the what, where, and when attributes of cybersecurity
issues. This paper was originated from our previous work
[8] that attempted to link the user from the temporal time
series curve to geospatial visualizations. At this paper,
we were able to extend the approach and its application
to link the user in multiple directions among temporal
visualization, geospatial visualization, and data view. We
borrow the term “representational fluency” [9] from psy-
chology and pedagogical literature to describe our efforts
of enabling the user to fluently switch among different
types of spatiotemporal visualizations and to more effi-
ciently solve analysis tasks. The extensions in this paper
include:

• A detailed explanation of the mechanism that selects
portions from the time series curves and links to
spatial visualizations. This mechanism was revised
and extended.

• A new mechanism that reversely selects and links
spatial visualizations and data views to time series
curves.

• New use cases to demonstrate these two mechanisms.
• Redesigned interaction operations that allow the user

to access information more smoothly.

To achieve smooth transitions across interactive visual-
izations, techniques such as brush and linking have been
widely used in VA systems. This paper provides a prac-
tical technical mechanisms to link multiple visualizations
and aims to help users gain better experience and improve
performance when analyzing the big network security
data visually.

Related work
To enhance the user experience of cybersecurity visual
analytics, we suggest adopting representational fluency
in designing the structure of spatiotemporal visualiza-
tions because “users of this information will need fluency
in the tools of digital access, exploration, visualization,
analysis, and collaboration [10]”. The literature review
inspects two main components: representational fluency
and spatiotemporal data visualization methods.

Representational fluency of visualizations
The concept of fluency is originally associated with the
ability to express oneself in both spoken and written
language and to move effortlessly between the two repre-
sentations. Although fluency is often associated with lan-
guage, researchers have extended fluency to other fields
such as physics, chemistry, engineering, andmathematics.
In these fields, fluency is the ability to understand and
translate among commonly used modes of representation,
such as verbal, mathematical, graphical, and manipulat-
able. In the context of information systems, fluency is the
ability to access, make sense of, and use information to
build new understandings [11]. Defined by Irving Sigel [9],
representational fluency is the ability to (1) comprehend
equivalence in different modes of expression; (2) compre-
hend information presented in different representations;
(3) transform information from one representation to
another: and (4) learn in one representation and apply that
learning to another.
Representational fluency is an important aspect of

deep conceptual understanding. It was mainly discussed
in pedagogical literature about promoting the transfer
between learning and the development of “expertise”. In
our context of visual analytics, we borrowed this con-
cept to describe how to let the analyst better compre-
hending the multiple visualizations of “when, where, and
what” for cybersecurity situational awareness. Represen-
tational fluency is more skillfulness than skill [12]. Skill-
fulness connotes continuous adaptation and dynamism
along with the ability to perform with facility, adeptness,
and expertise. Skillfulness of representational fluency
in visual analytics includes several capabilities, such as
abstractly visualizing and conceptualizing transformation
processes, qualifying quantitative data, working with pat-
terns, and working with continuously changing qualities
and trends. To achieve these goals, analysts should be sup-
ported with proper tools to interpret visualizations more
efficiently.

Visualization methods of W3 attributes
Much previous research has been devoted to exploring
different methods to visualize the large-scale high-
dimensional datasets. Keim et al. [13] reviewed and sum-
marized recent visualization techniques to deal with large
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multivariate datasets. One of their own techniques is a
hybrid approach that is scalable with “big-data” visualiza-
tion [14]. Guo et al. [15] proposed to use multiple-linked
views to visualize the multivariate data. Andrienko et al.
[4] created a structured inventory of existing exploratory
spatiotemporal visualization techniques related to the
types of data and tasks they are appropriate for. Based
on the W3 attributes, Foresti et al. [3,16] developed a
novel visualization paradigm, VizAlert, to visualize net-
work intrusion from all three “when”, “where”, and “what”
perspectives. Con-centric rings were used to represent
different time periods, from inside to outside. Because
of the limited screen space, the VizAlert system may be
unable to display the history for a long period. The user
needs to rely on interaction to pan and zoom for shifting
between different periods.
Some significant approaches were to analyze spatiotem-

poral patterns by making separate use of multiple maps
and statistical graphs. Alan M. MacEachren’s GeoVISTA
Center [9] uses highlighting, brushing, and linking, and
filtered and linked selections to help users analyze geo-
referenced time-varying multivariate data. IEEE VAST
2012 Mini-Challenge 1 (MC1) asked researchers to ana-
lyze a high-dimensional spatiotemporal dataset [17]. Most
of the challenge entries used maps and statistical graphs.
For example, Chen et al. [18] and Choudury et al. [19] used
one 2-D map to visualize the overall computer statuses in
a given time and a slider to adjust the time. Dudas et al.
[20] used time series curves to show the aggregate trend
of certain qualities.

Analysis process for spatiotemporal cybersecurity data sets
The analysis process on a spatiotemporal dataset often
happens conditionally and in sequence [21]. At first the
temporal aspect is analyzed, and then the spatial aspect,
or vice versa. It is difficult to have a joint integral model-
ing approach. We have observed such sequential analysis
processes in our own practice [22] while solving the VAST
2012 challenge MC2 [17], and in other winning entries
[23,24] when they tried to solve the VAST 2013 challenge
MC3 [25]. Many times when looking for issues, the user
first examined the temporal aspect by looking at the time
series curves to find out the anomalies (e.g., huge peak in
the curve), then checked out other detailed visualizations
to allocate the affecting hosts (IP addresses). Sometimes
the analysis starts with a detailed visualization, e.g., an IP
address showing abnormal behavior. To understand the
overall picture of the affected computers, the user will
then need to examine the time series curves. Sometimes
this process happens iteratively. The user starts from one
visualization, then goes to others, returns to the first visu-
alization with a different parameter (e.g. time or place),
and goes on to gain comprehensive cybersecurity aware-
ness. To investigate the detail, the analyst usually need to

narrow down and even to read the raw data such as the
log file.

Context - data and system
Our implementation of representational fluency was
developed on a visual analytics system SemanticPrism
[18]. It won the award of “outstanding integrated analy-
sis and visualization” in the VAST 2012 MC1. From 2011
to 2013, the IEEE VAST challenges committee created
three cyber-network visual analytics tasks [25] to sim-
ulate the complex nature of cyber security. VAST 2011
MC2 data contain 3-day logs of a small computer network.
VAST 2012 MC1 data record 2-day logs of a huge global
network. VAST 2013 MC3 data include 2-week logs of
a 1200-computer network. All the datasets provided are
spatiotemporal.
The high-dimensional spatiotemporal dataset we used

in this paper was from the VAST 2012 MC1. It simulates
a large enterprise network named the BankWorld, which
contains approximately a million computers in about 4000
offices. Offices have latitude and longitude information
that can be marked on the map. Computers are divided
into three classes, server, workstation, and ATM (Auto-
mated teller machine). By their functions, Servers are
further divided as web, email, file server, compute, or
multiple, and Workstations are further divided into teller,
loan, or office. Every 15 minutes each computer generates
a status log. Within the 48 hour period, the network accu-
mulated approximately 160million logs. Each log contains
a time stamp, IP address, activity flag, policy status, and
number of connections (NOC). Policy status has a value
range from 1 to 5 to represent healthy status from normal
to severe condition. Value 1 means the machine is healthy.
2 means the machine is suffering from mild policy devia-
tion. 3 means the machine has non-critical patches failing
and is suffering from serious policy deviations. 4 means
critical policy deviations and many patches are failing. 5
means the machine may be infected by virus or unknown
files are found. Activity flags also have 5 possible values
range from 1 to 5. Value 1 means normal activities have
been detected on the machine. 2 means the machine is
going down for maintenance. It may appear offline for the
next couple time slots. 3 means there were more than 5
invalid login attempts. 4 means the machine’s CPU is run-
ning at 100% capacity. 5 means a device (e.g. an USB drive
or a DVD) has been added to the machine.
The spatial part of this VAST 2012 MC1 dataset con-

tains two layers, the physical geographic location and
virtual IP addresses. Its IP space ranges from 172.1.1.2 to
172.56.39.254. The information of both has a hierarchical
structure enabling the top-level larger range to be divided
into several lower-level smaller ranges. In a real computer
network, the geographic locations may range from a con-
tinent, a country, a state, or a province to a specific office
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in a building. For IP addresses, the network can be divided
into multiple levels of subnetworks that are connected
through gateways. Each subnetwork occupies a partial IP
address space.
With the system SemanticPrism, the analyst is able to

see and compare data of different dimensions at mul-
tiple granularities. We chose visualization methods and
designed interactions based on the nature of the data and
the problems faced. SemanticPrism uses a multilinked-
view approach to explore the data from different per-
spectives. Using different transformation methods, data
are visualized by using the geospatial map, time series
curves, and pixel-oriented visualizations. The technique
of semantic zooming [26] was used as the basic interaction
technique to navigate through these visualizations. Each
visualization has multiple zoom levels to present different
levels of details. The analyst can scan to quickly under-
stand the overall situation of the enterprise network and
navigate further to read more details of regions, offices,
and even the level of individual computers.

Geospatial visualization with a time slider
The default view in SemanticPrism is a geospatial
visualization with a time slider that helps to aware the

network status at a given time (Figure 1). Offices of the
BankWorld are marked as square dots on the analogous
world map. Their different color shades indicate the max-
imum policy violation statuses of the computers within
the offices at that time. The analyst can slide the pointer
on the time slider to update the geospatial visualization to
a different time frame. Different dimensions of the infor-
mation (e.g. policy status and activity flags) were stacked
on the map as different layers. To let the analyst see the
global status, SemanticPrism provides a time-zone layer to
indicate the local times of different regions in this global
organization.
Besides zooming in on and out of the map, the analyst

can focus and investigate the data at different levels of
details through semantic zooming. Depending on the size
of available space, an office can be dynamically visualized
at four levels: (1) an individual dot when using the default
full-map view or when the space is still quite dense after
zooming; (2) a horizontal color bar to show the percentage
of computers with different policy statuses in the office;
(3) a series of growth curves of all policies in the office
where the X axis presents the temporal direction and the
Y axis the number of computers; (4) history diagrams of
each computer within the office.

Figure 1 Default view of the visual analytics system SemanticPrism.
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Time series curves
We adopted Ben Shneiderman’s visual information-
seeking mantra to guide the design of the SemanticPrism’s
information query process, “overview first, then zoom
and filter, and lastly details on demand” [27]. The time
series curves (the curve graph in Figure 1) can be con-
figured to provide an overview of the growth trends of
policy statuses, activities, server populations, and NOC
(number of connections) over the given period. Figures 2
and 3 curves show the total number of workstations in
different policies (2 5) and activities (2 5) over the 2-day
period. With the support of time series curves, the ana-
lyst can easily identify the overall trend of policy violation
growth and patterns of activities. By relying solely on
the curves, however, the analyst cannot see the cause,
details, and effects of an event. Usually he/she must man-
ually switch to other views to investigate, such as what
causes the curve to change, and where the change takes
place. This significant user-experience problem motivates
our new development of extending user interactions from
semantic zooming to marking interesting segments on the
curve.

Pixel-based visualizations
IP addresses indicate the virtual locations of network
computers. For cybersecurity issues, they provide a dif-
ferent perspective of spatial information than physi-
cal locations. The classification of IP addresses also
partially reflect the organization’s network structure.
SemanticPrism incorporated a pixel-based visualization
to show many IP blocks. In the default zoom level, five
rectangular panels show the number of computers within
an IP block that are affected by each activity and policy. In
the panels, each pixel represents a group of computers in
a particular class-C block. The X axis consists of the IP’s
class-B block, and the Y axis consists of the values of class-
C blocks. The colors of the pixels encode the number of
computers that carry the selected policy status or activ-
ity flags in the C-level blocks. Through semantic zooming,
the analyst is able to overview time series curves of all
C-level blocks within one B-level block and all individual
computers within a C-level bock.

Mechanism and implementation
SemanticPrism’s comprehensive visualizations and inter-
actions show multiple visualizations of where, when, and
what data components (Figure 4). With it, we were able to
discover all anomalies hidden within the large dataset in
the competition. In this paper, we implement the repre-
sentational fluency concept by extending the interaction
design in this system. We consider three important repre-
sentations for the user to be truly aware of the situation –
raw data, spatial visualization, and temporal visualization.
We seek to allow the user to shift fluently back and forth

among these three representations of the cybersecurity
information without losing the analysis context.

Dimension Hierarchy in SemanticPrism
To enhance the efficiency while analyzing a large multidi-
mensional dataset, we adopt the OLAP (online analytical
processing) [21] approach to execute analytical queries.
OLAP’s slicing operation enables the user to take out one
specific part of data. SemanticPrism [23] pre-computed
the aggregation values along necessary dimensions and
storing them into several database tables. The dimen-
sion hierarchy is essential for these computations. Pre-
computing all possible aggregations on all different granu-
larities, however, will use toomany resources.We selected
several dimensions to compute in certain granularities.
SemanticPrismmaintains a set of dimension hierarchies

so that the analyst can have multiple navigation paths to
narrow down and examine computers with a certain sta-
tus (e.g., policy or activity) at a certain time slot and in a
certain region. Spatially on a map, a computer is located
at the following hierarchy:
Company ⇒ Region ⇒ Office ⇒ Computer class
As virtual IP space, an IP address is located at
Whole IP space ⇒ B-level IP blocks ⇒ C-level IP Blocks
In this dataset, computers within one C-level block

belong to the same office and are in the same class of
server or workstation. But one office may contain many
C-level blocks. Therefore the basic aggregation of com-
puters we choose is the number of computers in one
C-level IP block with a given policy/activity status at a
given time. From such basic units, we can compute the
number of computers of on-policy status at one office at
one time, then the policy status at the region level, then
to the whole company level. Thus we can have different
levels of time series curves of different activity/policy sta-
tuses, from the basic level of computer classes, to regions,
and lastly the entire company. The number of connections
(NOC) are more related to IP-related attacks (e.g., port
scan); thus we can simply use the IP address hierarchy to
divide it.
With the spatial hierarchy and policy/activity status, the

system has multiple paths to aggregate the basic units
based on the user’s analysis needs.

Link data query to visualizations
For visual analysis systems, the raw data are the resource
of everything. The more details the dataset contains, the
more insights and discoveries can be found. For solving
cybersecurity issues, the datasets are usually very large
and comprehensive. It is impossible for human beings to
read through, compare, and identify issues in the large-
scale datasets. Visualization becomes the only feasible
way to allow the analyst to make sense of the large
amount of data. However, visualizations cannot show all
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Figure 2 Investigate the number of workstations that violate policy 5. Top: We want to check out which workstations are new to violation of
policy 5 at 2012-02002 4:45 p.m. by clicking on the segment in the curve. Middle: The map marks by red squares the two new offices with policy 5
violations. Bottom: Clicking on the top marked square to see the details.
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Figure 3 Investigate the number of workstations that have activity flag 5. Top: we want to check out what happened on activity 5 at that time.
Middle: The map marks offices by regions. Bottom: These computers are also marked by their IP addresses.
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Figure 4 Three components in spatiotemporal data. SemanticPrism’s visualizations show: where (spatial data in geospatial visualization), when
(temporal data in time curves), and what (data objects in data tables).

the information in the dataset. Through categorization,
aggregation, and visualization, only part of the informa-
tion has been presented in graphs. An analyst still needs to
frequently examine the original raw data (e.g., a recorded
log or an event report) to determine the exact issue. Thus
we should provide a direct-query interface for the user
to search the raw data. Based on the searched criteria,
the user can pop up visualizations, for example, to display
the locations of the computers under investigation in the
geographic visualization. Also from the visualizations, the
analyst should be able to open, allocate, and read the piece
of the raw data of an interesting point.

Link from time series curves to spatial visualization
The time series curve is the visualization to show the plot
of the data narration. The data are measured at successive
points in the temporal direction at uniform time inter-
vals. In computer networks, it is a common strategy to
aggregate (or count) certain network incidents at a given
time interval (e.g., 15 minutes in the VAST 2012 data).
Thus a series of data points along the time will be gen-
erated and can be visualized as time series curves. In our
implementation, the curves are plotted on a 2-D Cartesian
system with line segments connecting a series of points.
X axis is the time direction and Y axis is the value of
data. Thus such data have a natural temporal ordering.
The user should be able to see the overall trend of the
network status through the temporal curve. For a running

system, its temporal curve can present certain kinds of
patterns (e.g., fixed frequency and amplitude, or vari-
ous grow rates). For a complex system, such patterns are
sometimes hard to define by mathematic equations, and
therefore hard to be detected solely by machines. Tem-
poral visualizations rely on a human’s visual perception
and pattern recognition to help the analyst to detect such
potential attacks through recognizing abnormal patterns
in time series curves.
Figure 5 lists six popular abnormal situations, including

a sudden jump, dive, peak, valley, slop gradient change,
and frequency or amplitude change in oscillating curves.
In the figure, blue squares mark the data points, and red
line segments label the abnormal sections. Such abnormal
segments on a curve imply that there are some com-
puters behaved abnormally during that time period. This
paper only focuses on the abnormal segments as the four
scenarios on the top image of Figure 5. After detecting
an abnormal segment on the curve, the analyst needs to
investigate what caused the change. He/she should switch
from the overview curve to more detailed curves or other
visualizations to investigate its when, where, and what
details. Although sometimes the abnormal behavior may
happen globally, in our observation such behaviors most
of the time happen on computers within a small region.
Again, such a region could be a physical location or in the
virtual space of IP addresses. It is essential for the analyst
to find out which region(s) causes these problems in detail.
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Figure 5 Examples of abnormal sections (marked in red) on curves.

While working on a large-scale complex dataset, an ana-
lyst will find it tedious and exhausting to examine each
individual curve section to learn the related spatial infor-
mation. This VAST 2012 Challenge dataset includes 4,000
offices and 13,000 C-level blocks. Manually examining
each office or C-level block is simply impossible.
A time series curve of higher level granularity (e.g., a

region) can be divided into several curves of its subgran-
ularities (e.g., all sub-regions). Spatial data have hierarchy
and can be divided into many levels of sub-regions. The
aggregated value of the upper-level region is the total of
all its sub-regions. For example, the total number of com-
puters in one company must be equal to adding up all
computers in its regional offices. Thus an anomaly (e.g.,
a jump) on a higher level curve must appear on some
of its sub-curves. According to our observation, usually
only a few sub-curves contribute most of the change in
the higher-level curve. Thus it is essential for us to find
these sub-curves and allocate the spatial information from
them. In reality, curves will fluctuate slightly even in nor-
mal conditions. While finding the cause for the anomalies
in the curve, we must filter out these small fluctuations.
We store the time series data according to the dimen-

sion hierarchies we discussed in the previous section.
Using the OLAP slicing operation, we are able to divide
an aggregated value into different granularity levels. The
overall process of detecting anomaly from aggregated time
series curves to geospatial details can be described as
follows:

• The system maintains the hierarchies and relations of
different levels of subdimensions in different
directions. This information enables the system to
iteratively check all subdimensions until it reaches
the grounded basic granularity.

• The analyst anchors a suspicious segment on the
curve. In this operation, the user defines the following
parameters: start-and-end times, start-and-end data
values, and value difference at this dimension.

• The detailed spatiotemporal data of the suspicious
segment can be shown in two ways: locations on the
geospatial map at the current time, or many curves
“sliced” from the original curve. Based on the nature
of the sliced curve, the system may automatically
select one direction to show the details, or prompt to
ask the user to select a direction to show the captured
segment in detail.

• The system checks all of its subdimensions to learn
which contribute the most to the overall value
difference. This is done by sorting them by their
percentages of value changes in the given period. If
the percentages are within the same range, the
system will rank the subdimensions by their absolute
values. The higher the percentage of value change,
the more contribution we must consider it will be
giving to the overall value change. In some scenarios,
some subdimensions may have much smaller values
than others. The absolute value change in one smaller
region might be too small to contribute to the overall,
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although it is still significant enough locally. Thus we
consider the relative change of numbers instead of
the absolute change.

• The value changes might be caused by one or several
subdimensions, or by most (or all) subdimensions. In
the evenly distributed scenario, the relative
percentage value of each subdimension should be
very close.

• The system sums up the absolute number of changes
from the highest-ranked subdimension to the
lower-ranked subdimensions and tracks all
subdimensions until the summary value reaches a
certain user-defined threshold (e.g., 95%) of the
original value. If we consider threshold as 100%, all
small fluctuations will be counted and may blur the
focus of the problem.

• If these subdimensions can be divided further to the
next level of subdimensions, the system will iterate
back to step 4 until the subdimensions are the
most-grounded basic granularity.

• Group these basic granularities into a cluster if
necessary. Based on the nature of these granularities,
some spatial-clustering algorithms, such as DBSCAN
(Density-Based Spatial Clustering of Application with
Noise) [28], can be used.

• Mark these clusters on the map if these basic
granularities are geographic based, or display them as
a collection of time series curves if they are still time
based.

Link from spatial visualization to time series curves
From a spatial visualization back to a time series curve
is relatively straightforward. The spatial visualization nor-
mally presents the geographic distribution of different
types of data. In the SemanticPrism (and many other
spatial visualization systems), which type of data to be
visualized can be controlled by menus that turn the data
layers on and off. Also with zooming technology, the ana-
lyst can zoom in a smaller area on the visualization to open
the view of a region or a subnetwork. Therefore from one
spatial visualization we can capture a list of parameters,
including the type of data items being visualized, current
time, and current display area/region/subnetwork. Based
on these parameters, popping up the related time series
curve is simple.

Interaction design to support the fluency
An analyst may start the investigation by analyzing the
curves. The abnormal segments in a curve, like sudden
jumps, dives, peaks, or valleys, reflect the value change
and therefore present us with a hint that something
worthwhile is waiting to be investigated further. As dis-
cussed earlier, the time series curve can be seen as a
series of vertices with connecting line segments. Thus the

analyst can interact with two types of objects on the curve,
the vertices and line segments, and can mark the suspi-
cious segments in two ways. The first way is to mark a
suspicious one-time-unit segment by simply clicking on
the segment. To mark a segment across several time-unit
periods, the user clicks on the starting point and end
point on the curve and leaves two red triangle marks (top
screen shot in Figure 2). After selecting one segment or
two vertices, the system will present a pop-up menu for
the analyst to select from if there are several possible sub-
dimensions. In the example shown by Figure 3, further
details can be shown in either the map or the IP pixel-
based visualization. If there is only one subdimension, the
system will automatically jump to the detailed view and
display the marked area. Because the data are discrete
with time intervals, selecting a partial segment is unneces-
sary. The minimal selectable range should be one segment
(or the two neighboring data vertices).
The area of interest on the map is indicated by a red

rectangle. Although the offices are spatially spread across
the map, they are hierarchically grouped by regions.
Therefore we did not use particular spatial clustering
algorithms, but rather cluster offices by regions. If two
or more offices are in one region, they will be marked
together within one block. The boundary of the rect-
angle is defined by the spatial elements (offices in the
middle screen shot, Figures 2 and 3). Sometimes the
affected area will be tiny, for example, containing only one
office. Marking the tiny area may not be visually signifi-
cant enough to be noticed. Thus we define the minimum
size of a marking as a rectangle measuring 45×35 pixels
(Figure 2). The analyst can click on the rectangle to zoom
in. The semantic zoom mechanism will automatically dis-
play details of the affected offices (middle and bottom
screen shots).

Use cases
We use some examples below to show how we implement
visual fluency in SemanticPrism, which tries to provide
the user a smooth and efficient method to link informa-
tion from different visualizations.

From time series curve to spatial visualization
In Figure 2, from the time series curve, the analyst saw
the increasing number of computers are falling into high
policy statuses. To accommodate multiple curves in one
graph, we used thin lines in SemanticPrism to draw
the curves. To identify how the policy violence spread
spatially, the analyst needs to examine the locations of
the computers. The user can inspect each segment on the
policy-5 curve to check new computers that violate the
policy. After clicking on the segment between 4:30 to 4:45
p.m., the user chooses the map from the pop-up menu to
see which offices have new computers are new in policy
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status 5 starting at 4:45 p.m. The spatial view highlights
the two new offices as the middle image in Figure 2. It is
possible for the user to highlight all computers by select-
ing one time point. The user can simply click on the vertex
in the curve to highlight all computers having the problem
at that time.
In our current implementation, we simply use regions to

cluster offices. Thus the two offices are marked separately.
Clicking on the red marked boundary will lead the spatial
view to zoom to that area. But because only one office is in
that region, the system automatically zooms to the max-
imum level, which shows the detailed information of the
office, including time series curves about policies in this
office, and shows all computers with that policy 5 viola-
tion. We can see the IP 172.37.154.15 just started in policy
5 status at the given time (marked by the gray vertical line
to indicate the current time).
Figure 3 demonstrated how the same curve jumps can

be marked on either maps or IP addresses. The top image
has 6 curves about the number of computers at different
activities status (including total number of online com-
puters) along the two days. At each hour there is a step
(up or down) on the curves of activity 3 and 4. To find
out what causes these steps, the analyst selects and exam-
ines one of the jumping segments (top image). By checking
out the affected area on the map, he/she can see that
they are actually caused by time zones – Offices open at
7 a.m. and close at 5 p.m. As time passes, offices open
to turn on computers and close to shut off computers,
which causes the sudden steps on the curve. The red
squares mark the offices with computers that are newly
emerging in activity 5. However, in here the marks are
not 100% accurately aligned with the time zone because
of the threshold we used (defined in step 6 the previ-
ous mechanism section). Small fluctuations happen all the
time everywhere, especially for these computer activities,
such as log-in errors. We assume that within a large area
(e.g., a region), these small fluctuations that happened
in small sub regions (e.g., in an office) will be counter-
acted with each other and make the regional number
relatively stable in a normal situation. Therefore smaller
areas might sometimes be neglected, or mismarked, as
shown in the middle image of Figure 3. But the areas that
contributed much to the change will be clearly marked
out.
The bottom image of Figure 3 shows the distribution of

new computers in the IP space. Each small square in the
image represents a C-level IP block. Rows from bottom to
top are the 2nd byte of the IP address (from 172.0.xx.xx to
172.55.xx.xx). Columns from left to right are the 3rd byte
of the IP address (0 to 255). Besides marking each C-level
block with blue squares, we also mark the B-blocks on
both the left and right sides with red indicators (Figure 3
bottom).

From spatial visualization to time series curves
SemanticPrism provides a semantic zooming mechanism
to change the details of display while the user is zoom-
ing in [22]. Offices on the map can change into 4 levels of
details, depending on the available on-screen space.When
zoomed in enough, the user is able to see the time series
curves for individual offices (Figure 6).
Besides using semantic zooming to check out time

series curves of different offices, the user can also click
on a region or an office to see the temporal summary.
Region 25 (the right-most region Alta at the top image
of Figure 6) has many blacked-out offices, which means
that these offices are disconnected from the Internet, pos-
sibly because of a power outage in the area. We can see
that the distribution of blacked-out offices changes as
time passes. To get to the affected computers over time,
we can click on the region to bring out a regional time
series curve (top image of Figure 7). The black curve
shows that the overall computers sent out status reports
during the period. A big valley on the curve shows that
more and more computers lost connections in the mid-
dle of the first day. The worst time was at 11 p.m. BMT
(Bankworld Mean Time). The situation recovered in the
next 4 hours. The analyst can also choose to turn on the
layers to highlight one activity status or one policy sta-
tus. The green squares surrounding offices on the top
image show offices with computers at activity 2 (going
down for maintenance). Since the activity 2 layer is cur-
rently turned on, the time series curve of activity 2 is also
included in the curves. However, the number of comput-
ers with activity 2 is so small, at the pixel level it is at the
baseline and hides behind the policy 5 curve. The mid-
dle image in Figure 7 uses a logarithmic scale to boost
these curves with extremely small values on the screen.
Zooming in on this curve will break down the time series
data of the region into individual offices. These curves for
all offices are displayed in a grid as the bottom image of
Figure 7.

Discussions
Visual analytics is the process for an analyst to learn the
facts from the large volume of raw data through differ-
ent forms of visualization. Representational fluency is the
ability to comprehend equivalence in different modes of
expression [9]. We borrow this term from psychology and
pedagogical literature to describe our efforts to enable the
analyst to fluently switch among different types of visu-
alizations and data views to build up the understanding
of facts. Cybersecurity issues can be visualized in tem-
poral, in geospatial, in structural, or in raw data as logs.
Visual analytics fluency allows the ability (1) to trans-
form information from one representation to another;
(2) to comprehend the equivalence in different modes
of representations, including data and visualizations; and
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Figure 6 Zoom in to see different levels of office details.

(3) to comprehend information presented in different
representations.
In this paper, we propose an auto linking mechanism

that can smoothly transfer the analyst from one view to

the other and thus effectively improve the speed of visual
data analysis. Cognitively, a person can pay attention to
only 3 or 4 things at one time. Our fluency metaphor may
also reduce the cognitive load, helping the analyst to focus
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Figure 7 Time series curves corresponding to the region 25 in Figure 6. Top: Overall number of computers in different policy flags in region 25.
Middle: The logarithmic scale version of the top visualization. Bottom: Zoom in on the curve to break down the regional time series curves into offices.
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on some important incidents. At the stage of submitting
SemanticPrism to the VAST 2012 challenge (July 2012),
the four team members needed several days to identify all
the anomalies by manually going over suspicious areas on
all the curves and jumping across different views to exam-
ine and filter information. Most of the energy and time
was exhausted during the back-and-forth navigation.With
this newly developed linking mechanism, on one hand an
analyst can mark suspicious segments on the time series
curves and go directly to its related spatial visualization
and data view. On the other hand, the analyst can simply
right-click on the map, opening the menu to show one or
several related time series curves.
We plan to improve this mechanism and its direct inter-

action design in the following directions.
First, we should extend our approach to other types

of data and visualizations. The VAST 2012 MC1 dataset
contains no data about computer network connectivity.
In some cybersecurity analysis scenarios, visualizing such
connections as the network intrusions from external IPs
to internal hosts is crucial. Most often, connection data of
these kinds can be visualized as a tree, or a network graph,
with different layout variations (e.g., layout nodes in radial
fashion). How to anchor parts of such spatial visualiza-
tions and link them to their related time series curves,
geographic visualizations, or data views comprise the new
domain we want to explore.
Second, we should find amethod to automatically detect

anomalies on the curves. A curve must be displayed at a
certain resolution to allow the analyst to identify prob-
lematic areas. However, because the curves are mostly
based on aggregation, the user sometimes cannot visu-
ally detect the problem when the number is too small to
cause a significant visual change on the curve. Some lit-
erature on data mining and statistics [29,30] shows that
allowing the system to detect anomalies on the curves by
itself is possible.We will consider integrating this effective
approach.
This approach can also be easily extended to handle

streaming data such as real time analysis. In such case,
the time series curve will become dynamic by updating
itself in regular time intervals. Visually the curve will grow,
extend, and slide from right to left (if the new data starts
from the right end) just like the electrocardiography. Old
part of curve will disappear on the left end. The user
still be able to notice the anomaly happened during the
recent past time intervals. For the just past time interval,
the aggregations should be computed across the hierarchy
of the spatial structure from top to bottom. The com-
puting resource needed for pre-compute the aggregation
depends on the length of the time interval and the com-
plexity of the spatial structure. For this VAST 2012 MC1
data, since the time interval is pretty long as 15 minutes
and there are only several thousands of spatial units,

computing aggregations for one time interval is very fast.
For existing computed aggregations of each time interval,
there is no need to re-compute them. The only aggrega-
tions need to be updated are the aggregations about recent
past history (e.g. recent two days). But normally there is
no urgent need to get the aggregation for the past history
in real-time.
The inspiration and implementation of this fluency

mechanism were based on the visual analytics system
SemanticPrism and the VAST 2012 challenge dataset.
To understand its generalizability and limits, we will use
other datasets to test the possibility of linking the W3
structure visualizations. Furthermore, we aim to study the
possibility of representational fluency being a suitable and
valid design goal in the context of visual analytics and how
to promote it to different platforms and systems.
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