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Abstract

Popular network scan detection algorithms operate through evaluating external sources for unusual connection
patterns and traffic rates. Research has revealed evasive tactics that enable full circumvention of existing approaches
(specifically the widely cited Threshold Random Walk algorithm). To prevent use of these circumvention techniques, we
propose a novel approach to network scan detection that evaluates the behavior of internal network nodes, and
combine it with other established techniques of scan detection. By itself, our algorithm is an efficient, protocol-agnostic,
completely unsupervised method that requires no a priori knowledge of the network being defended beyond which
hosts are internal and which hosts are external to the network, and is capable of detecting network scanning attempts
regardless of the rate of the scan (working even with connectionless protocols). We demonstrate the effectiveness of
our method on both live data from an enterprise-scale network and on simulated scan data, finding a false positive rate
of just 0.000034% with respect to the number of inbound flows. When combined with both Threshold Random Walk
and simple rate-limiting detection, we achieve an overall detection rate of 94.44%.
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Introduction
Network scanning – an attempt to enumerate and/or
fingerprint hosts and services on some victim network –
is a common precursor to an attack, and often has utility
in post-incident forensics. As discussed in [1], precisely
quantifying what a ‘scan’ is can be difficult. This is par-
ticularly true when one considers parallelized scans (e.g.
from a botnet), extremely slow scans attempting to
evade detection, and the potential for non-hostile scans.
We focus on detecting ‘horizontal’ scans from a single
source that attempt to discover the active hosts on a net-
work (e.g., “Ping scans”) or a particular service across a
network (e.g., scans for SSH services on port 22). This
approach may apply to detecting scanning botnets as
each contributing source can be detected individually.
We do not detect ‘vertical’ scans that attempt to enu-
merate the services on a single host.
A highly effective and widely cited method for detecting

scanners is the Threshold Random Walk (TRW) algorithm
[2]. TRW can often detect single source scanning after only
4 or 5 connection attempts. Related approaches include [3]
and [4]. While effective, these approaches suffer from two
limitations: they can be circumvented through mixing
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probe attempts with accesses to known active hosts, and
they cannot handle scans using stateless protocols. Simpler
thresholding methods, such as those in [6-9], count probe
frequency within some time window and can be circum-
vented by an attacker slowing down the scan rate.
Thus, there is thus a need for a complementary scan

detection method that 1) cannot be circumvented
through knowledge of existing hosts, 2) does not require
stateful connections or additional information about the
internal structure of the defended network, and 3) can-
not be evaded by simple rate-limiting approaches. In this
paper, we develop such an approach and then show how
it can be combined with TRW and simple rate limiting
to form a highly effective ensemble approach.
Our method draws on a related insight to that devel-

oped with TRW in [1]: since scanners do not know the
internal structure of the network they are more likely to
access inactive nodes. However, where TRW examines
the number of legitimate and illegitimate targets with
which each source communicates, we examine the num-
ber of sources communicating with each target. This
conceptual inversion of the high-level TRW logic en-
ables us to avoid many limitations of TRW (particularly
the ability to evade TRW by connecting to operational
servers), while retaining TRW’s advantages in terms of
rate-insensitivity and rapid detection.
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We proceed as follows. In section 2, we present related
work and our differentiation from it. In section 3, we
present details of our scan detection methodology. Sec-
tion 4 analyzes the algorithmic execution and memory
complexities. Section 5 describes our experimental data,
and section 6 provides the empirical results. We con-
clude in section 7.

Related work
A wide variety of scan detection methods have been sur-
veyed in [2]. Perhaps the most influential and significant
of those is that of [1], in which the TRW method is pro-
posed. This approach is based on the observation that in
the course of enumerating an unknown network, a scan-
ner will generate a relatively large number of unsuccess-
ful connections; legitimate traffic by contrast should
generate unsuccessful traffic only rarely. By examining a
ratio of successful to unsuccessful connections, robust
and rapid identification of potential scanners can be
achieved. A weakness of the algorithm is that a scanner
can boost its successful connection count by accessing
known good servers, enabling additional probing of un-
known addresses prior to detection. If enough known
good servers are probed first (e.g., 6 or 7 for the pub-
lished TRW parameters), TRW will permanently classify
the scanner as benign and will ignore any subsequent
scanning activity [3]. TRW can be modified to avoid
such permanent labelling, but this causes a significant
increase in the computation and memory requirements
[3], while still leaving open the ability for an attacker to
delay being categorized as malicious by seeding scan ac-
tivity with accesses to known servers. Another weakness
is that TRW only operates on stateful protocols like TCP
that clearly define a “failed” connection. This limitation
is due to TRW classifying stateless communication as
scan activity in situations where there is a lack of bi-
directional communication [3].
TRW has been used as a building block for other

work. The work of [4] describes enhancing TRW with a
severity metric to distinguish reconnaissance scanning
from peer-to-peer scanning. A ranking metric for a
TRW-based method is also applied in [5] to detect inter-
domain scans. The work of [6] examines a different
extension of the TRW method in which the target
thresholds for the likelihood ratio are sequentially
adapted according to some user-defined acceptable risk
for a bounded sequence, thus allowing the TRW method
to converge to a decision in (almost surely) finite time.
The work of [7] modifies TRW to allow for scan detec-
tion in network backbones where there is asymmetric
routing. It considers the ratio of distinct IPs contacted to
distinct ports contacted within a time window, and la-
bels IP addresses that show a pronounced asymmetry in
either direction (i.e., an extremely high number of IPs
contacted on just a few ports or an extremely large num-
ber of ports on a limited number of distinct IPs) as po-
tential scanners.
The work of [8], similarly to TRW, uses a likelihood

ratio test, however it focuses on comparing the empirical
distribution of benign traffic with that of an assumed
uniform distribution of scanning traffic. As noted in [1],
an inaccurate empirical distribution may result in signifi-
cant false positive results and an assumed uniform dis-
tribution of scanning traffic may present detection
circumvention opportunities for attackers. Probabilistic
methods are also used in [9] to construct a Bayesian be-
lief network to detect anomalous packets that may be in-
dicative of a scan and a correlation engine to attempt to
collect these anomalous packets into sets that suggest
scanning behavior. As in [8], the accuracy of this method
depends in large part on the quality of the data used to
build the statistical model that represents ‘normal’ traffic.
Other approaches include [10], in which the tools of

social network analysis are applied to graphs constructed
from netflow data to detect a wide range of intrusive be-
haviors, including scans. In [11], the RIPPER data min-
ing tool is applied to a set of hand-crafted feature
vectors in order to learn novel rules to classify network
scans.
Simpler threshold based mechanisms (see, e.g., [12-15]),

that simply tally connection attempts and alarm if the
number of connections attempted by a single IP exceed
some threshold within a certain period of time, have also
been used. These can be effective for many types of scan-
ning and were implemented in systems such as the Net-
work Security Monitor [12] and Snort [13]. Later systems
such as Bro [14] elaborated on this initial concept by also
tracking failed connections in a side count for particular
ports. Such techniques are lightweight and sufficiently ef-
fective on unsophisticated scanning activity that they con-
tinue to be widely used. More recent developments in this
vein examine TCP flags attempting to find unusual se-
quences of flags, such as FIN flags being sent or received
when no already established connection is present [15], or
construct more elaborate feature vectors based on distinct
IP counts of successful and unsuccessful connections [16].
Several methods address detecting groups of collabor-

ating scanners, such as those coordinated through a bot-
net or other covert distributed system [17-20]. While
our approach can detect individual scanners making up
such a coordinated effort, we do not attempt to group
detected scanners into collaborating groups.

Method
As stated previously, our method is designed to work with
both stateful and stateless protocols in situations where
knowledge of the currently active hosts is not available. It
is also resistant to attackers deliberately accessing known
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active servers in order to perform a TRW camouflage at-
tack [3]. The method is illustrated in Figure 1. First, we
examine inbound flows (flows from internal to external
hosts), and score each internal host on the basis of the
number of unique external hosts that have contacted it (to
associate higher scores with ‘riskier’ behavior, we take the
inverse of this number; see annotations for W in Figure 1).
Next, each external host is scored on the basis of the high-
est score obtained by any communicating partner (see an-
notations for S in Figure 1). Finally, to reduce false
positives, we track the number of distinct connections that
each external host creates (see annotations for C in
Figure 1). Combining the S and C measures allow us to
classify each external host as a scanner or benign host.
Formally, we construct a directed bipartite graph G= (V,E)

with V = L ∪ R, all external hosts in L and all internal
hosts in R. We let the edge (x,y) indicate that there exists
observed traffic from x to y, and add only edges of the
form {(x, y) : x ∈ L, y ∈ R} (so that only “inbound” traffic is
recorded). We then assign scores Wy, Sx, and Cx as:

Wy ¼ 1=# x∈L : x; yð Þ ∈Ej j

Sx ¼ sup
y

Wy : x; yð Þ ∈E� �

Cx ¼ # y∈R : x; yð Þ ∈Ej j

Where # |set| denotes the cardinality of set. The
nodes with a high W are those that received communi-
cation attempts from a relatively low number of distinct
Figure 1 Example scoring for in-degree method.
hosts. The nodes with a high S are those that attempted
to initiate connections to any such sparsely contacted
hosts (the supremum of the edge connected Wy scores).
And the nodes with a high C made many connections
(without reference to the connectivity of the target).
Under the assumption that inactive hosts will receive

far fewer inbound connection attempts than active hosts,
and that scanners are disproportionately likely to at-
tempt to both contact these inactive hosts and make a
large number of connection attempts, it then follows
that external nodes with high joint C and S scores are
more likely to be scanners. If statistical information is
known about the rate of incoming packets to active
hosts, these scores may be used in a likelihood test simi-
lar to [1] or [8] to identify the probability that a particu-
lar external host is scanning. In the absence of this
information, we may use unsupervised approaches such
as thresholding or clustering to identify potential scan-
ning nodes. A straightforward approach that does not
require reliance upon strong distributional assumptions
(e.g. normality of the distribution of contacts) is to
choose some empirical quantile θs, θc ∈ [0, 1] and find
thresholds α and β satisfying:

α ¼ argmin
i

P Sx≤i : x∈Lð Þ≥θs

β ¼ argmin
t

P Cx≤t : x∈Lð Þ≥θc

where the probability measure P is obtained from the
empirical distribution of S or C, as appropriate. We then
designate an external host as a potential scanner if both
(Sx > α) and (Cx > β).
In Figure 1 we provide a simple worked example of

the scoring method. We assume that the external IPs are
the left partite component, and the internal IPs are the
right partite component. The bottom-most external IP is
a scanner, and the bottom-most internal IP is an inactive
host. As the inactive host receives only a single connec-
tion from the scanner, it obtains a W score of 1; this is
the largest across the W scores of the internal IPs con-
nected to the scanner, so the scanner obtains an S score
of 1. As the scanner contacts 5 internal IPs, it obtains a
C score of 5.
Note that this method requires only directed flows

from the L component to the R component in order to
calculate the relevant scores. This feature allows the in-
degree method to function in situations where asymmet-
ric routing exists without any need for modification (c.f.
[7], where the TRW approach required modification to
function adequately under asymmetric routing condi-
tions). We do not address this feature directly, but the
experience of [7] suggests that direct deployment of the
TRW method under asymmetric routing will be highly
problematic.
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Algorithm and execution complexity
This method can be implemented using a batch process-
ing approach in time complexity O(mlogm) where m
represents the number of flows but can achieve linear
time with a slight variation. Most steps are O(m) while
the calculations for α and β require O(mlogm) due to
the requirement to sort two arrays containing S and C
values respectively. If linear time complexity is needed,
the calculations for α and β can be reused in subsequent
batches provided that the time slices being evaluated are
of the same length, or can be approximated through a
number of on-line estimators [21]. The memory foot-
print required is at most O(m) provided one uses an in-
place style sorting algorithm (e.g., in-place heapsort).
The algorithm is as follows:

1. Extract all flows whose source is in L and whose
destination is in R in O(m) time.

2. Enumerate over all extracted flows to filter out those
that do not connect distinct IP pairs. Use a hash table,
LRHash, keyed by both IP addresses to determine if a
flow connects distinct pairs. A single hash table
lookup and insertion takes O(1). Since there are O(m)
remaining flows, this operation takes O(m).

3. Enumerate over the set of flows with distinct IP pairs.
For each flow, populate and update a hash table,
RHash, by using the destination IP address as the key.
For each processed flow, increment a count of source
IPs communicating with the destination IP and update
a variable containing the inverse of this value (the W
metric). This uses O(m) time since there are O(m)
flows and hash table lookups and updates are O(1).

4. Enumerate over the set of flows with distinct IP
pairs. For each flow, populate and update a hash
table, LHash, by using the source IP address as the
key. For each processed flow, increment the count
of destination IPs communicating with the source
IP (this is the C metric) and append each
destination IP to a list (one list for every hash key).
This uses O(m) time since there are O(m) flows,
hash table lookups and updates are O(1), and
appending to a list is O(1).

5. Calculate the S metric for each source IP by
accessing each key in LHash and traversing the local
list to look up each destination IP in RHash. Assign
S to be the largest W value found in the RHash
lookups and store it in LHash. This takes O(m) to
access each key, an amortized O(m) to traverse all
destination IP lists, and O(1) for the RHash lookup.
Overall this is O(m).

6. Calculate α in O(mlogm) by accessing each key in
LHash, building a sorted array of the discovered S
values, and extracting the value stored at the index
(θS * length(list)).
7. Calculate β in O(mlogm) by accessing each key in
LHash, building a sorted array of discovered C
values, and extracting the value stored at the index
(θC * length(list)).

8. Compare each source IP in LHash and its S and C
values to α and β to identify the scanners in O(m) time.

This batch based algorithm can be executed with over-
lapping time windows since the linear execution option
executes very quickly. The algorithm can then be run in
small periodic increments (but still using large time win-
dows), approximating an always-on online solution. A
true online algorithm is more difficult to achieve be-
cause a single flow can change the S value in O(m)
nodes in L. Even more problematic, a newly processed
flow indicates that some amount of time has elapsed.
Thus, previously process flows may need to drop out of
the calculation for W, S, and C values for all nodes. Data
structures to accommodate this are computationally ex-
pensive and so we suggest using linear complexity, con-
tinuously running, overlapping time window, batch jobs
as a better solution.

Data
Our data sets consist of network flows, both live and
simulated. Each flow contains source and destination IP
addresses, port numbers, connection times, and TCP
flags (used for TRW analysis).

Live data
Our live data was collected for 24 hours from a single net-
work intrusion detection sensor. A total of 5,897,187 flows
were observed, involving 454,510 distinct pairs of IP ad-
dresses. This data was known a priori to contain one port
scan across a substantial portion of a class C subnet.
Due to the potentially sensitive nature of the live data,

it has been anonymized in our results as follows:

1. Each distinct external class C subnet within the data
has been replaced with a non-routable subnet selected
uniformly at random from the set of non-routable
subnets in 10.0.0.0/8.

2. Each distinct internal class C subnet within the data
has been replaced with a non-routable subnet selected
uniformly at random from 172.16.0.0/12.

3. Each final octet within each class C subnet (both
internal and external) has been replaced with an octet
selected uniformly at random from the range 1–255
(for the sake of simplicity we neglect the reduction in
valid IP addresses caused by the assignment of
gateway, network name, and broadcast addresses).

4. We do not report port information, other than
noting whether source IP, destination IP, or both
exhibit a fixed port during the reported scan.
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Simulated data
To augment the live data, we simulate 3 scans by intro-
ducing appropriate flow records into the live data. We
simulate an ICMP “ping” scan, a TCP SYN scan (with
fixed source and destination ports), and a UDP scan
(with fixed destination ports). Each simulated scan
probes all 255 members of a class C subnet within the
network perimeter from a spurious source IP address.
Partial and rate-limited scans are simulated by subsamp-
ling some proportion of the full scans and distributing
their event times uniformly over the duration of the flow
being analyzed. Responses from active hosts to the simu-
lated scanning packets were created as follows: ICMP
packets generated no response; UDP packets generated
either an ICMP Port Unreachable message, a mock UDP
response packet, or no response (all with equal probabil-
ity); TCP packets received an ACK for active hosts
(followed by a final RST packet from the scanner). In-
active hosts created no response.
We note that our algorithm does not make use of sub-

netting information except at the presentation layer, and
hence a very sparse scan across a class B subnet (for ex-
ample, a single random IP within each class C subnet
contained within the class B subnet) would yield the
same results, however this renders the display of results
less compact, and so is omitted for space.

Results
We first used our in-degree algorithm as a guide to dis-
cover novel scans within the live network data, as well
as the scan known a priori, while examining the impact
of various parameter settings. We then explore an en-
semble scan detection solution by combining our algo-
rithm with TRW and rate-based scanning. We show
how TRW complements our approach by both ap-
proaches detecting different sets of scanning IPs. We
furthermore show how pre-filtering our in-degree
method with a rate-based scanning method can substan-
tially reduce the false positive rate. We then compare
our findings against a manual analysis of the same data.
For our last data set, we investigate in-degree and TRW
detection of the simulated scans injected into the live
data. We conclude this section with an analysis of the
difficultly of an attacker simultaneously circumventing
both our in-degree approach and TRW.

In-degree method results on live network traffic
After the initial processing of live data as described
above, 509 external hosts were identified as initiating
connections with nodes within the portion of the net-
work observed by the sensor. The S and C values were
tabulated as described in section 3 and are presented in
Figure 2 and Figure 3. Total counts that exceed joint
thresholds of C and S are given in Table 1.
Marginal distributions of S and C suggest that the bulk
of the data (89.2%) has an S score of 0.333 or less, and
83.3% of the data has a C score of 1 or less. The joint
distribution indicates that there is a slight dependence
between S and C, with approximately 2.0% (10/509) of
the data having both S > 0.333 and C > 1 versus 1.8% if
the scores were independent. The data having these
values are highlighted in bold in Table 1 (bold italics in-
dicates the presence of scans that were not detected by
any combination of methods examined, as discussed
below). At the other extreme, approximately 86.4% of
our joint data falls into the lower bins in both dimensions
(versus an expected value of 74.3% assuming independ-
ence). A permutation test yields a one-tailed p-value of
0.0178, indicating slight but significant correlation.
Detailed examination of the 10 external IPs in the bold

cells in Table 1 indicated that 2 were false positives. One
was determined to be the result of a web-based advertis-
ing network rotating through a pool of IP addresses
serving auto-refreshing content to 4 otherwise idle hosts.
The second was the result of network time protocol
(NTP) traffic delivered to 2 otherwise inactive hosts.
There was thus a .000034% false positive rate with re-
spect to the number of original flows and .00044% with
respect to distinct pairs of IP addresses. By either meas-
ure, the false positive rate is extremely low.
The remaining 8 were clearly identifiable as scan at-

tempts, and confirmed to be such after examination by
network analysts. Summaries of two of the most obvious
scans, consisting of two external IP addresses directed
traffic to 84 and 261 distinct IP addresses, respectively,
are presented in Table 2 (scans 1 and 2) as well as a
more subtle one (scan 3) discussed below. The TCP scan
(scan 1) from Table 2 was known a priori to be in the
data, and was successfully detected by our algorithm.
While it is gratifying to note that these two scans were
detected, it should be noted that these were rather obvi-
ous scans readily detected by even simple windowing
methods. Scan 1 in Table 2 was perhaps somewhat rate
limited, scanning just over 4 IP addresses per second;
however, scan 2 in Table 2 made no attempts at subtlety,
probing substantial portions of two class C subnets in
less than 3 seconds.
Of perhaps greater interest are those scans that did at-

tempt some degree of subtlety, presumably to evade trad-
itional rate-based scan detection methods. Scan 3 in
Table 2 shows a summary of one such scan detected in
the live data by our method, in which just 7 IP addresses
were scanned over the course of approximately 7.75 hours.
Consultation with network analysts suggests that there is
an extremely high likelihood that this traffic represents a
deliberate attempt to evade rate-based portscan detection
algorithms. Note that the ICMP protocol is not one that is
supported by most stateful connection-based scanners [3],



Figure 2 Marginal S Counts for scores; the red line indicates the selected cutoff.
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and hence this scan would not have been detected by
those methods.
Our results for the in-degree method alone are sum-

marized in Table 3. This includes results for a ‘filtered’
version of in-degree where we use a rate-based detection
scheme to filter out obvious scans (explained in more
Figure 3 Marginal C Counts for scores; the red line indicates the selected
detail in section 6.2.2). We define a lateral scan as a scan
in which a single target port was identical over all in-
ternal IP addresses scanned. We define a network enu-
meration scan as one in which either a portless protocol
(i.e. ICMP) was used, or a single destination port per IP
was contacted that varied from IP to IP in what appears
cutoff.



Table 1 Cumulative counts greater than or equal to joint
values of C and S

C score

S score 1 2 10 18 85 97 128

0.010 509 85 17 10 6 5 4

0.050 343 54 17 10 6 5 4

0.200 117 40 15 9 6 5 4

0.250 69 17 2 2 1 0 0

0.333 55 10 2 2 1 0 0

0.500 49 7 2 2 1 0 0

1.000 32 7 2 2 1 0 0

Bold font indicates that the S and C values were greater than or equal to the
data-determined thresholds of 0.333 and 1.0, respectively; bold italics indicates
the presence of scans at those S/C values that were not detected (see text for
details). Note that these represent cumulative counts, and so, for example, the
value of 10 for S ≥ 0.333 and C ≥ 1 includes all values below and to the right.
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to be a largely random manner. We define a service enu-
meration scan as one where multiple connections were
attempted to each internal IP across a fixed set of ports,
with substantially the same set attempted for each such
IP. We do not include false positives in the table but re-
state that 2 inactive hosts received legitimate traffic that
resulted in a false positive result for both filtered and
unfiltered methods.

Composition of methods on live data
We now explore how the in-degree method comple-
ments TRW detection and how rate-based detection
methods can reduce in-degree false negatives.

TRW and in-degree method
The TRW algorithm was applied to the same data for
comparison and the results are shown in Table 4. The
data shows that the in-degree and TRW algorithms are
strongly complementary, with very little overlap between
the scans detected by the two methods. This suggests
Table 2 Scan detected from live traffic

Field Value(s) – scan 1

Scan duration 6 minutes, 7 seconds

Protocol TCP

Flags SYN or SYN-ACK

Source IP (anonymized) 10.141.12.103

Source ports Constant

Destination IPs (anonymized) 84 within 172.40.102.0/24

Destination ports Constant

Packets transmitted 3 per contact

Total bytes transmitted 186 per contact

Data bytes transmitted 24 per contact
that our method successfully detects many scans that
the TRW algorithm cannot (and vice versa).

Pre-filtering in-degree data with rate-based scanning
We next applied a simple rate-based detection scheme
as a pre-filter to the in-degree algorithm (filtering out
flows corresponding to detected scans) to obtain the re-
sults in Table 5. For this, we flagged an IP as a scanner if
it completed more than 5 connections to distinct IP/port
pairs within any 5-second window. Removing these
scans before applying the in-degree method significantly
enhanced the ability of the in-degree method to detect
the remaining scanners; it did not improve the detection
rate of the TRW algorithm. As all three scans removed
by rate-limiting were UDP scans, and the TRW algo-
rithm is not capable of detecting UDP scans in the ab-
sence of a network state oracle of some form, the
removal of these scans did not alter the information
available to the TRW algorithm or its performance.
Three scans were detected and filtered in this way.
These three scanned large portions of the network, in-
creasing the number of connections to internal IPs, and
thus lowered their W scores. In 6 cases these obvious
scans lowered the S scores of other scanners (for the un-
filtered in-degree instance), interfering with the ability of
the in-degree method to detect them. Service enumer-
ation scans (as defined above) were particularly vulner-
able to this problem.
Table 5 then represents our most important result. Of

the 36 known scans in our dataset, the tri-algorithm ap-
proach detected 34 of them. 3 were detected solely by
the rate limiting approach. 13 were detected solely by
TRW. 12 were detected solely by the in-degree algo-
rithm. 6 were detected by both TRW and the in-degree
algorithm. The overall detection rate for the tri-
algorithm approach was then 94.44%. This compares to
individual detection rates of just 50.00% for in-degree,
Value(s) – scan 2 Value(s) – scan 3

2.8 seconds 7 hours, 48 minutes

ICMP and TCP ICMP

SYN or SYN-ACK (TCP only) N/A

10.97.54.7 10.60.88.39

Varied between 4 values N/A

29 within 172.198.57.0/24 7 within 172.198.57.0/24

110 within 172.45.99.0/24

122 within 172.110.117.0/24

Constant (when TCP) N/A

6 (ICMP) or 1 (TCP) per contact 1 or 3 per contact

420 (ICMP) or 62 (TCP) per contact 70 bytes per packet

48 (ICMP) or 8 (TCP) per contact 8 bytes per packet



Table 3 Detection counts by class of scan

Type Detected
(unfiltered)

Detected
(filtered)

Not
detected

Lateral port (TCP) 6 9 0

Lateral port (UDP) 0 0 3

Network
enumeration (any)

2 5 0

Service enumeration 0 4 2

Totals 8 18 5

Table 5 Cross-tabulation of TRW and filtered in-degree
detections

TRW

In-degree (pre-filtered) Detected Not detected Total

Detected 6 12 18

Not detected 13 5* 18

Total 19 17 36

*3 of these 5 were detected by the rate-limiting scan detection algorithm
and removed.
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52.78% for TRW, and 8.33% for rate-limiting. The dra-
matic increase in the overall detection rate highlights
the complementary nature of these three algorithms.

Manual analysis
We performed a manual analysis of the inbound traffic
subset of the 5.9 million flow records identified above,
using a variety of internal analysis and aggregation tools,
as well as direct examination of the flows. This required
significant analyst effort and thus is a completely infeas-
ible method for routine scan detection. Our analysis re-
vealed the 2 scans not detected by any automated
detection method, both contained within the darker
shaded cells in Table 1. These two appeared to be service
enumeration scans, resulting in higher S scores for each
scanned host as multiple services were requested. Note
that as this was a manual analysis, we cannot rule out
the possibility of additional false negatives. Reducing the
threshold for S to 0.250 would have successfully detected
both such scans at the cost of an additional 5 false posi-
tives (we also note that proposed modification to the
TRW described in [3] would have enabled the TRW
method to detect them). 25 external hosts also delivered
a single contact to nodes which had not received any
other traffic. While these cannot be ruled out as ex-
tremely slow scan attempts, they were determined to be
most likely the result of misdirected traffic.

Simulated data
Simulated data was included in the raw data as described
above in an attempt to precisely quantify the effect of
scan size on the likelihood of detection. Values for α and
β were selected as described above, using values of 0.75
for θ in both cases. Scans were directed at a single mod-
erately populated subnet with 119 active IP addresses
Table 4 Cross-tabulation of TRW and in-degree detections

TRW

In-degree Detected Not detected Total

Detected 2 6 8

Not detected 17 11 28

Total 19 17 36
out of the space of 254 possible ones (excluding stand-
ard gateway and broadcast addresses). For each trial, the
indicated number of probes were directed to random ad-
dresses in the subnet, and the in-degree algorithm run
without further refinement. In all cases, the cutoff for C
was 2 (preventing detection of scans consisting of a single
probe) and the cutoff for S was 0.333. Scans were reliably
detected with as few as 4 IPs scanned per attempt, and in
no case did a single scan of 5 or more scanned IPs escape
detection. Despite the creation of additional connections
that could potentially have reduced the S score of some
hosts as described above, our inclusion of simulated scans
did not alter the detection rates for any of the scans de-
tected in our initial analysis; we therefore only report the
detection results for the additional, simulated scans. Re-
sults are shown in Figure 4.
As successful connections are only defined for TCP

connections, the TRW method was applied only to the
simulated TCP scans. Results are given in Figure 4.
While the TRW method did successfully identify the
majority of simulated scans as the number of probes per
IP address approached 10, the success rate was markedly
less than that of the in-degree method. The TRW results
for probes 1–5 were expected as the construction of
TRW requires a sufficient history of failed probes in
order to be able to alert on a scan. The deficiency of
TRW when compared to in-degree for probes 6–10 re-
flects the fact that probes to active services (prevalent in
this subnet) can camouflage scanning activity against
TRW detection. Conversely, in the operational data in sec-
tion 6.2, scans generally involved a large number of probes
per scan, resulting in a much higher TRW performance.

Circumvention analysis
While the in-degree method shows excellent perform-
ance when detecting random scans on the basis of low
in-degree count, our false negative and rate-limited scan
results point out a potential evasion technique: generat-
ing multiple connections to each host from distinct IP
addresses in order to artificially decrease the S scores.
Preliminary work has shown that under modest assump-
tions, it is not difficult to construct a ‘chaff ’ set of con-
nections from a set of scanning IP addresses that will
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reduce the S scores sufficiently to avoid detection under
this method, while simultaneously maintaining a low
enough rate to evade rate-based intrusion detection
systems. As shown above, however, the TRW method of
[1] forms an excellent complementary method to ours
(for TCP based scans) such that it will be difficult for an
adversary to avoid both detectors simultaneously. The
TRW method and its variants can be evaded by
maintaining a sufficiently high ratio of successful to
unsuccessful connections [1,3] while our method ultim-
ately forces a potential attacker to create numerous
unsuccessful connections to evade detection. In order to
simultaneously maintain both a non-alerting TRW score
and a non-alerting S score, the total number of connec-
tions that the attacker must therefore create per inactive
IP address probed to avoid detection increases signifi-
cantly. However, note that there are no limits on the rate
at which any feasible covert scanning may be accom-
plished. By reintroducing rate-based detection methods,
which limit the total rate of connections regardless of
status, the combination of these three methods places
limits on the total rate at which new IPs can be scanned
without detection. In future work, we will investigate the
synthesis of the three methods and theoretical limits on
the potential for covert attacker scanning rates.
Conclusions
We have presented a novel approach to scan detection that
operates in a complementary fashion to the Threshold
Random Walk (TRW) method of [1]. Instead of just
providing another scan detection methodology, our ap-
proach detects previously unmitigated TRW circumvention
activity as well as activity that operates using connectionless
protocols. Our novel method has a low time complexity,
and has been applied to real-world network data both alone
and in conjunction with the TRW and rate-limiting scan
detection methods. The in-degree method is shown to
detect scans not identified by the TRW method, and to do
so with increased accuracy when the data is pre-processed
to remove scans detected by a simple rate-limiting method.
Further application to randomly generated scans have
shown that – under the assumption that target IPs are
picked at random from the available addresses in the
subnet, and the subnet in question is not completely
allocated – the in-degree method is extremely effective at
picking out novel scans. While doing this, the in-degree
method maintains a very low false positive rate.
We combined in-degree method with TRW and simple

rate limiting to form a highly effective ensemble
algorithm. Since TRW and in-degree work using distinct
data sets (internal node behavior versus external node
behavior), the combination makes it extremely difficult
for scanners to operate without detection and mitigates
known circumvention approaches. Deliberately connect-
ing to know active hosts prior to probing unknown
addresses to circumvent TRW is likely to be detected by
in-degree and ‘chaff ’ connections designed to circumvent
in-degree are likely to be detected by TRW.
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