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Abstract 

The research presented, investigates the optimal set of operational codes (opcodes) that create a robust indicator of 
malicious software (malware) and also determines a program’s execution duration for accurate classification of benign 
and malicious software. The features extracted from the dataset are opcode density histograms, extracted during 
the program execution. The classifier used is a support vector machine and is configured to select those features to 
produce the optimal classification of malware over different program run lengths. The findings demonstrate that 
malware can be detected using dynamic analysis with relatively few opcodes.

Keywords:  Component, Packers, Polymorphism, Metamorphism malware, Obfuscation, Dynamic analysis, Machine 
learning, SVM

© 2016 O’kane et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Background
The malware industry has evolved into a well-organized 
$Billion marketplace operated by well-funded, multi-
player syndicates that have invested large sums of money 
into malicious technologies, capable of evading tradi-
tional detection systems. To combat these advancements 
in malware, new detection approaches that mitigate the 
obfuscation methods employed by malware need to be 
found. A detection strategy that analyzes malicious activ-
ity on the host environment at run-time can foil malware 
attempts to evade detection. The proposed approach is 
the detection of malware using a support vector machine 
(SVM) on the feature (opcode density histograms) 
extracted during program execution. The experiments 
use feature filtering and feature selection to investigate all 
the Intel opcodes recorded during program execution.

While the full spectrum of opcodes is recorded, fea-
ture filtering is applied to narrow the search scope of the 
feature selection algorithm, which is applied across dif-
ferent program run-lengths. This research confirms that 

malware can be detected during the early phases of exe-
cution, possibly prior to any malicious activity.

“System overview” section describes the experimental 
framework and “Test platform” section details the test 
platform used to capture the program traces. “Dataset 
creation” section explains the dataset creation and is fol-
lowed in “Opcode pre-filter” section with a description of 
the filtering method used. “Support vector machine” sec-
tion introduces an SVM and describes the feature selec-
tion process. The results and observations are reviewed 
in “Discussion” section. Finally, “Conclusion” section 
concludes with a summary of the findings.

Related work
This research is an investigation into malware detection 
using N-gram analysis and is an extension of the work 
presented in [1]. However, a summary of the related 
research is given here to aid the discussion within this 
paper. Typical analysis approaches involve Control Flow 
Graphs (CFG), State Machines (modelling behaviour), 
analysing stack operations, taint analysis, API calls and 
N-gram analysis.

Code obfuscation is a popular weapon used by mal-
ware writers to evade detection [2]. Code obfuscation 
modifies the program code to produces a new version 
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with the same functionality but with different Portable 
Executable (PE) file contents that are not known by the 
antivirus scanner. Obfuscation techniques such as pack-
ing are used by malware authors as well as legitimate 
software developers to compress and encrypt the PE. 
However, a second technique polymorphism [2] is used 
by malware. Polymorphic malware uses encryption to 
change the body of the malware which is governed by a 
decryption key that is changed each time the malware is 
executed creating a new permutation of the malware on 
each new infection. Eskandari et  al. [3] propose to use 
program graph mining techniques for detecting poly-
morphic malware. However, these works employing sub-
graph matching to classify and detect malware. These 
API based methods are easily subverted by changing API 
call sequence or adding extra API calls that have no effect 
except to disrupt the call-graph.

Sung et  al. [4] proposed an anomaly based detection 
using API call sequences to detect unknown and poly-
morphic malware using an Euclidian distance measure-
ment between API sequences alignment of different call 
sequences. This API sequence alignment proposed by 
Sung approach is effectively a signature based approach 
since it ignores the frequency of the API calls.

Tian et al. [5] explored a method for classifying Trojan 
malware and demonstrated that function length plays a 
significant role in classifying malware and if combined 
with other features could result in an improvement in 
malware classification. Unfortunately, these techniques 
are easily subverted with the addition of innocuous API 
calls. Sami et al. [6] also propose a method of detecting 
malware based on mining API calls statically gathered 
from the Import Address Tables (IAT) of PE files.

Lakhotia et  al. [7] investigated stack operations as a 
means to detect obfuscated function calls. His method 
modelled stack operation based on push, pop and rets 
opcodes. However, his approach failed to detect obfusca-
tion when the stack is manipulated using other opcodes.

Bilar [8] demonstrated using static analysis that Win-
dows PE files contain different opcode distributions for 
obfuscated and non-obfuscated code. Bilar’s findings 
showed that opcodes such as adc, add, inc, ja, and sub 
could be used to detect malware.

In other research, Bilar [9] used statically generated 
CFG to show that a difference in program flow control 
structure exists between benign and malicious programs. 
Bilar concluded that malware has a simpler program flow 
structure, less interaction, fewer branches and less func-
tionality than benign software.

More recent, research carried out by Agrawal et  al. 
[10] also demonstrated a difference in the program flow 
control of malicious and benign software. Agrawal used 

an abstracted CFG that considered only the external 
artefacts of the program and used an ‘edit distance’ to 
compare the CFGs of programs. His findings show a dif-
ference in the flow control structure between benign and 
malicious programs.

N-gram analysis is the examination of sequences of 
bytes that can be used to detect malware. Using a machine 
learning algorithm, Santos et  al. [11] demonstrated that 
N-gram analysis could be used to detect malware.

Santos et al. [12] perform static analysis on PE files to 
examine the similarity between malware families and 
the differences between benign and malicious software. 
Analysis with N-gram (N = 1) showed considerable simi-
larity between families of malware, but no significant dif-
ference between benign and malicious software could be 
established. In a later paper, Santos et al. evaluated sev-
eral machine learning algorithms [13] and showed that 
malware detection is possible using opcodes. Anderson 
et  al. [14] combine both static and dynamic features in 
a multiple kernel learning framework to find a weighted 
combination of the data sources that produced an effec-
tive classification.

Shabtai et  al. [15] used static analysis to evaluate the 
influence of N-gram sizes (N =  1–6) to detect malware 
using several classifiers and concluded that N =  2 per-
formed best. Moskovitch et  al. [16] also used N-gram 
analysis to investigate malware detection using opcodes 
and his findings concurred with Shabtai. Song et al. [17] 
explored the effects of polymorphism and confirmed that 
signature detection is easily evaded using polymorphism 
and is potentially on the brink of failure.

Due to the weakness in static analysis and the increase 
of obfuscated malware, it is difficult to ensure that all 
the code is thoroughly inspected. With the increas-
ing amount of obfuscated malware being deployed, this 
research focuses on dynamic analysis (program run-time 
traces). Other dynamic analysis approaches use API calls 
to classify malware, which can easily be obfuscated by 
malware writers. Therefore, these experiments seek to 
identify run-time features (below the API calls) that can 
be used to identify malware. For this reason, the research 
investigates opcode density histograms obtained during 
program run-time as a means to identify malware.

System overview
The goal of this research, is two-fold (1) find a set of 
opcodes that are good indicators of malware and (2) 
determine how long the program needs to run in order to 
obtain an accurate classification. Figure 1 shows an over-
view of the experimental approach and to assist under-
standing, each section is labeled with a corresponding 
section heading used throughout this paper.
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• • ‘Test Platform’: The program samples are executed 
within the controlled environment to create program 
run-time traces.

• • ‘Dataset Creation’: Each program trace is parsed and 
sliced into 14 different program run-lengths, creating 
14 unique datasets defined by the number of opcodes 
executed.

• • ‘Pre-Filtering’: A filter is applied to reduce the num-
ber of opcodes (features) that the SVM needs to pro-
cess; thereby reducing the computational overhead 
during the SVM training phase.

• • ‘SVM Model Selection’: is a process of selecting 
hyper-parameters (regularisation and kernel param-
eters) to achieve good out-of-sample generalisation.

Test platform
A native environment would provide the best platform in 
terms of the least tell-tale signs of a test environment and 
thereby mitigate any attempts by the malware to detect 
the test environment and exit early. However, other con-
siderations need to be taken into account, such as ease of 
running the malware trace analysis.

A virtual platform is selected (QEMU-KVM), as the 
hypervisor provides isolation of the guest platform (Win-
dows 7 OS test environment) from the underlying host 
OS and incorporates a backup and recovery tool that 
simplifies the removal of infected files. In addition to 
the virtual platform, a debugger is used to record the 
run-time behaviour of the programs under investiga-
tion. A plethora of debugging tools exist, with popular 
choices for malware analysis being IDA Pro, Ollydbg and 
WinDbg32 [18].

The Ollydbg debugger is chosen to record the pro-
gram traces as it utilizes the StrongOD plug-in, which 
conceals the debugger’s presence from the malware. 
When a debugger loads a program, the environment set-
ting are changed, which enables the debugger to control 

the loaded program. Malware uses techniques to detect 
debuggers and avoid being analysed. StrongOD mitigates 
many of the anti-analysis techniques employed by mal-
ware and for an in-depth discussion on these techniques 
see work by [19, 20].

Dataset creation
Operational codes (Opcodes) are referred to as assembly 
language or machine language instructions and are CPU 
operations. They are usually represented by assembly lan-
guage mnemonics.

Before realising the classifier, the raw data is distilled 
into a set of meaningful information that is used to train 
the classifier to predict unknown malicious and benign 
software samples. As discussed in the related work sec-
tion, the features are constructed from program trace (p) 
and is represented as a set of instructions (I) and where n 
is the number of instructions:

An instruction consists of an opcode and operands. 
Opcodes, by themselves, are significant [8] and, there-
fore, only the opcodes are harvested with the operand 
being reduntant.

The program can, therefore, be defined as a set of 
ordered opcodes o:

Program slicing is used to investigate the effects of dif-
ferent program run lengths. Therefore, os is defined as a 
set of ordered opcodes within a program execution:

where m is the length of the program slice, 1k, 2k, 4k … 
8192k opcodes.

(1)p = I1, I2, . . . In

(2)p = o1, o2, . . . on

(3)os ⊆ p

(4)os = o1, o2 . . . om
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The opcode density histograms are constructed using 
the following steps:

• • The program traces are created by recording the run-
time opcodes that are executed when a program is 
run;

• • The opcode densities for each program trace are cal-
culated using the parser described below.

The dataset is created by expressing the features as a 
set of opcodes density, extracted from the runtime traces 
of Windows PE files. The dataset consists of 300 benign 
Windows PE files taken from the ‘Windows Program Files’ 
directory, and 350 malware files (Windows PE) down-
loaded from Vxheaven [21]. The datasets are constructed 
from different program run lengths, creating 14 distinct 
datasets. This new datasets are created by cropping the 
trace files into lengths based on the number of opcodes 
(1k-opcodes, 2k-opcodes etc.) prior to constructing a den-
sity histogram for each cropped trace file. The dataset crea-
tion starts by cropping the original dataset into 1k opcodes, 
and a density histogram is created, and is repeated for 2k, 
4k, 8k, 16k,… 4096k and 8192k opcodes in length.

Opcode pre‑filter
The computational effort associated with N-gram analy-
sis is often referred to as the ‘Curse of dimensionality’ 
and was first coined by Bellman in 1961 to describe the 
exponential increase in computational effort associ-
ated with adding extra dimensions to a domain space. 
Using an SVM to examine all the opcode permutations 
over the complete opcode range creates a computational 
problem due to the high number of feature permutations 
produced.

The increased effort for each additional feature added 
is calculated using the following Eq. (5)

where n  =  total number of features in the dataset; 
r  =  number of features within the group of features 
under consideration.

To reduce the computational effort, the area of search 
is restricted to those features that contain the most infor-
mation. This is achieved by applying a filtering process 
that ranks features according to the information that 
they contain and that is likely to be useful to the SVM 
[22]. Each feature is assigned an importance value using 
eigenvectors, thereby ranking the feature’s usefulness as a 
means of classification.

Principal Component Analysis (PCA) is a transforma-
tion of the covariance matrix, and it is defined in (6) as 
per [23]:

(5)number of permutations =
n!

(n− r)!r!

where C  =  Covariance matrix of PCA transformation; 
X =  dataset value; X  =  dataset mean; n and m =  data 
length.

PCA compresses the data by mapping it into subspace 
(feature space) and creating a set of new variables. These 
new variables (feature space) that define the original data 
are called principal components (PCs), and retain all of 
the original information in the data. The new variables 
(PCs) are ordered by their contribution (usefulness/
eigenvalue) to the total information.

The filter consists of two phases: Firstly, PCA is used 
to determine the most significant PCs, i.e. the number of 
PCs that contain 99.5 % of the data variance. PCA calcu-
lated that 8 PC values embodied 99.5 % of the total vari-
ance i.e. Eq.  (10) n = 8. Secondly, the ranking value (R) 
is used to identify those opcodes that contain significant 
information (variance) and is calculated by multiplying 
the significant eigenvector column with the respective 
eigenvalues and then summing each row:

where R = Sum of the matrix variance; V = eigenvector; 
d = Eigenvalue scalar; n = 8; most significant values that 
represent 99.5 % of the variance within the data.

Figure 2 shows the ranking of features using (10), with 
the Y axis showing the ranking of the features, the X 
axis listing the features (opcodes) and the Z axis show-
ing the different program run lengths. It can be seen 
that the top 20 ranked features vary with the program 
run length.

However, high ranking features such as rep, mov, add, 
etc. remain consistently high over the different program 
run lengths and the lowest ranking features such as lea, 
loopd, etc. remain consistently low over the different pro-
gram run lengths. Considering the mid-ranking features, 
it can be seen that significant variations occur with differ-
ent program run lengths.

Splitting these features into their opcode categories: 
arithmetic (sub, dec); logic (xor); and flow control (je, jb, 
jmp, pop, nop and call) infers that the program struc-
ture (flow control) changes with different program run 
lengths. Therefore, in the following experiment, the filter 
is run for each program run length to ensure the opti-
mum feature selection.

Support vector machine
SVMs are classifiers that rely heavily on the optimal 
selection of hyper-parameters. A poor choice of values 

(6)Cij =
1

n− 1

n
∑

m=1

(

Xim − X̄i

)(

Xjm − X̄j

)

(7)Rk =

n
∑

k=1

V · dk
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for a hyper-parameter can lead to poor performance in 
terms of overly complex hypothesis that leads to poor 
out-of-sample generalisation. The task of searching for 
optimal hyper-parameters, with respect to the perfor-
mance measures (validation), is the called ‘SVM Model 
Selection’.

The model selection process is categorised into:

• • Kernel selection;
• • Parameter grid search;
• • Feature selection.

Herbrich et  al. [24] demonstrated that, without nor-
malisation, large values can lead to over-fitting and 
thereby reducing the out-of-sample generalisation. Nor-
malisation can be performed in either the ‘input space’ or 
the ‘feature space’.

Input Space normalisation is carried out on the input 
features (x) and is defined as:

Feature space normalisation is applied to the kernel 
rather than to the input vectors. Consider a kernel func-
tion K(x, y) which represents a dot-product in the feature 
space. Normalisation in the feature space requires a new 
kernel function definition [25]:

where R is a unit hypersphere.
Input space normalisation, as defined in (11), is imple-

mented in the experiments presented in this paper.

(8)x̄ =
x

�x�
∈ R

(9)k̄
(

x, y
)

=
k
(

x, y
)

√

k(x, x)k
(

y, y
)

∈ R

An SVM maximizes the precision of the model by 
transposing the data into a feature space (high dimen-
sional) where a hyper-plane separates the new features 
into their respective classes. This increases the class 
separation and is illustrated by way of an example, two 
opcodes pop and ret are used as they demonstrate the 
characteristics of kernel mapping. Figure 3 shows a plot 
of pop and ret features and how there mapping into fea-
ture space increases class separation. 

The selection of an appropriate Kernel is key to the suc-
cess of any machine learning algorithm. A linear kernel 
generally performs better at generalising the training 
phase into good test results where the data can be lin-
early separated. However, as shown in Fig. 5, the data is 
not linearly separated. Therefore, an RBF kernel (a non-
linear decision plane) is used as it yields a greater accu-
racy than a linear kernel, as illustrated in Figs. 5 and 6.

The correct adjustment of the RBF kernel parameters 
significantly affects the performance of the SVM’s ability 
to classify correctly, and poorly adjusted parameters can 
lead to either overfitting or underfitting. There are two 
parameters—C and λ. C is used to adjust the trade-off 
between bias and variance errors and λ determines the 
width of the decision boundary in feature space.

Two grid searches are performed to find the values of 
λ and C that produce an optimal SVM configuration. 
The first search is a coarse grain search, ranging from 
λ = 1 e−5 to 1 e5 and C = 0–10. This is followed by a fine 
grain search (increments of 0.1) over a reduced range 
(λ = ±10, C = 0–3). The optimal performance was estab-
lished with λ = 1 and C = 0.8.

Before continuing with the experiments, the results 
need to be placed in context. The measure of malware 
detection is based on:
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Detection accuracy is defined in (10) and is the correct 
classification of True Positive (TP) and True Negative 
(TN).

False positive (FP) is when a benign file is mistakenly 
classified as a malicious file and is defined in (11).

This is also known as a false alarm and can have a sig-
nificant impact on malware detection systems. For exam-
ple, if an antivirus program is configured to delete or 
quarantine infected files, a false positive can render a sys-
tem or application unusable.

False negative (FN) is when a malicious file is mistak-
enly classified as benign and is defined in (12).

This occurs when an anti-virus security product fails 
to detect an instance of malware. This can be due to a 
zero-day attack or malware using obfuscation techniques 
to evade detection [2]. The impact of this security threat 
depends on whether the detection method is the last line 
of defence in the overall malware detection system.

False positives present a major problem, in that net-
works and host machines, can be taken out of service by 
the protective actions, as a consequent of alarms, such 
as quarantining or deleting a critical file. However, this 
paper focuses on end-point detection where false nega-
tives present a security threat. Therefore, this research 
focuses on the minimisation of FN rate along with the 
detection accuracy.

(10)Detection Accuracy =
TP + TN

TP + TN + FP + FN

(11)False Positive =
FP

TP + FP

(12)False Negative =
FN

TN + FN

In order to address the problem of FN rates, the opti-
misation function considers the FN rates by measuring 
the distance between the detection accuracy and the FN 
rate as described in (13). Steers the search by selecting 
those features that maximise OPTvalue.

where D is a scalar used to adjust the sensitivity of the FN 
rate.

The challenge here is to choose a value of D that guides 
the SVM to select features that lead to the desired behav-
iour i.e. maximise the detection accuracy while mini-
mising the FN rate. Setting D =  1 will direct the SVM 
to maximise the distance between detection accuracy 
and the FN rate. However, this may not yield the lowest 
FN rate. Therefore, D has to be greater than 1 to penal-
ise the SVM for selecting non-minimal FN rates. A pilot 
study is carried out to find the value of D that will pro-
duce the maximum detection accuracy that has a low FN 
rate. It is not practical to investigate all values of D for all 
the combinations of opcodes studied in this experiment. 
Therefore, the cost function (13) is evaluated for D = 1, 
1.5, 2 and 4. The results are shown in Fig.  4, where the 
upper part of the graph shows the detection accuracies 
for D = 1, 1.5, 2 and 4 against the program run lengths 
and the lower part of the graph shows the FN rates for 
D = 1, 1.5, 2 and 4 against the program run lengths. The 
following observations can be made:

• • D = 1 produces a detection accuracy ranging from 
72.3 to 90.8 % (average 85.1 %) and a FN rate ranging 
from 0 to 10.79 % (average 5.4 %);

• • D = 1.5 produces a detection accuracy ranging from 
70.8 to 90.8 % (average 84.4 %) and a FN rate ranging 
from 0 to 9.25 % (average 4.96 %);

(13)OPTvalue = Detection Accuracy− D × FN Rate
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• • D = 2 produces a detection accuracy ranging from 
70.8 to 90.8 % (average 84.4 %) and a FN rate ranging 
from 0 to 6.18 % (average 2.98 %);

• • D = 4 produces a detection accuracy ranging from 
70.8 to 81.5 % (average 75.1 %) and a FN rate ranging 
from 0 to 3.1 % (average 0.44 %).

Considering the average results; D =  1 and D =  1.5 
yield very similar results with good detection accuracy 
of 85.1 and 84.4  % respectively but D =  1 and D =  1.5 
produce a high FN rate of 5  % approximately. D  =  4, 
produces an excellent FN rate of 0.44 %; however the cor-
responding detection accuracy is low at 75.1  %. D =  2 
yields a compromise between D = 1.5 and D = 4 with a 
detection accuracy of 84.4 % and a FN rate of 2.98 %.

The results show that a lower value of D achieves a 
higher detection rate at the expense of the FN rate. A 
greater value of D results in lower FN rate at the cost of 
the detection rate. D = 2 delivers a low FN rate without 
overly penalising the detection accuracy and is therefore 
chosen as the steering function (13) for the remainder of 
the experiments carried out in this paper.

The SVM feature search uses Eq. (13) with D = 2 and 
scans all the combinations of opcodes. The search starts 
with one opcode and examines each of the filtered 
opcodes, testing for the largest value of (13). Next, the 
search is repeated, examining all unique combinations of 

two features and so forth, until all 20 opcode features are 
used. Table 1 shows the results, with the maximum opti-
misation value shaded.

Note, the columns ‘1 to 20’ represents the number of 
opcodes in each test, with the rows ‘1, 2, 4, 8,…, 8192’ 
represent the program run lengths in k-opcodes. The 
optimisation value is shown against that number of 
opcodes and program run length. I.e. the first row shows 
the cost function value (measure of performance) for a 
single opcode feature, with the maximum optimisation 
value for each program, run length and the second row 
shows the cost function values for two opcode features, 
with the maximum optimisation value for each program 
run length and so on. In Table 1, the maximum values are 
identified with an underscore. It can be seen that a point 
is reached, when adding more features results in a reduc-
tion of the maximum value; the assumption made is that 
over-fitting is occurring. As already mentioned, the grid 
search is guided by the performance metric in Eq.  (13) 
and is measured using tenfold cross-validation.

While an optimal detection rate is a vital characteris-
tic of any detection system, FP and FN rates need to be 
considered. These experiments are aimed at end host 
detection, and it can be argued that FN rates outweigh 
the importance of FP rates. Therefore, the aim of our 
approach is to convict all suspicious files and let further 
malware analysis determine their true status.
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In a final testing phase, bootstrapping is introduced 
to ensure a robust measure of out-of-sample generalisa-
tion performance. The concern is that sample clustering 
may result, as many of the malware samples belong to the 
same malware family and often have similar file names. 
The Parser used, reads files from the directory (in alpha-
betic order) and creates the density histograms, which 
may result in clustering of malware samples that belong 
to the same family. Therefore, randomly selecting test 
samples prior to the SVM processing will ensure that the 
validation data is random.

Bootstrapping is implemented in Matlab using the 
built-in function ‘randperm’ to randomly split the data-
set into training and testing data. As shown in the script 
below, the labels are first overwritten with ones to indi-
cate benign samples for training and zeros for malicious 
training samples. The script then randomly overwrites 
10 % of the benign and malicious files to test as shown in 
the script below.

%Matlab script – Randomised Cross-validation
%Randomly select test data
% first set all the data samples to training data
inputDataBenignType(:) = ones; # Benign training samples
inputDataMalwareType(:) = zeros; # Malicious training samples

% randomly selects benign samples for testing
n = size(inputDataBenignType);
k=n(2)/10;
index = randperm(n(2),int8(k));
inputDataBenignType(index) = 3; #Benign testing samples

%Randomly select malware sample for testing
clear index;
n = size(inputDataMalwareType);
k=n(2)/10;
index = randperm(n(2),int8(k));
inputDataMalwareType(index) = 2;#Malicious testing samples

The premise of Bootstrapping is that, in the absence of 
the true distribution, a conclusion about the distribution 
can be drawn from the samples obtained. Parke et al. [26] 
suggest that 200 iterations are sufficient to obtain a mean 
and standard deviation value of statistical importance.

As previously mentioned, the optimisation value is 
used to find a set of features that yield the optimum com-
bination of detection accuracy and FN rate (as shown in 
Table 1). Figure 5 shows the detection accuracy and the 
FN rates for the different program run lengths derived 
from the maximum optimisation values (Table  1). The 
results shown in Fig.  5 are validated using 200 itera-
tions of the Bootstrapping method. Figure  5 shows that 
medium program run lengths produce the best detec-
tion accuracy coupled with the lowest FN rates. However, 
good detection rates are achieved for short program run 
lengths but detection rates need to be considered in con-
junction with the corresponding FN rate.

While there is no universally defined valued that speci-
fies a ‘good detection’ system; the values obtained in 
these experiments need to be placed in context. Curt-
singer et al. [27], defined 0.003 % FN as an ‘extremely low 
false negative system’ and Dahl [28] classified a system 
with < 5 % FN as a ‘reasonably low’ false negative rate. Ye 
et al. [29] examined several detection methods and found 
that FN rates varied significantly with different classifiers 
such as Naive Nayes with 10.4 % FN; SVM with 1.8 % FN; 
Decision Tree (J48) with 2.2  % FN; Intelligent Malware 
Detection System (IMDS) with 1.6 % FN.

While our approach fails to satisfy the criteria of 
‘extremely low’ FN, it does meet the criteria for a ‘reason-
ably low’ FN rate for the program run lengths of 1k and 
above 8k.

Table 1  Program run length versus %optimisation value
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Figure  6 shows the detection accuracies (DR) and the 
false negative rates (FN) plotted against the number of 
features used for classification. Figure  6 is constructed 
by taking an average of the detection accuracies and false 
negative rates across the program run lengths (as indi-
cated by the maximum optimisation values shown in 
Table  1) for feature groups (1–20). This shows the rela-
tionship between the number of features and the detec-
tion accuracy and false negative rates. It can be seen 
that both the detection accuracy and false negative rate 
improves with an increasing number of features (up to 13 
features), and degrades and becomes more inconsistent 
(greater variance) thereafter.

It can be seen (Fig. 6), that adding more features does 
not always improve the results. The performance of both 
the detection accuracy and the FN rate peaks at 13 fea-
tures (average), above which the performance degrades. 
This degradation is pervasive in all the program run 
lengths. It is believed that this is likely due to over-fitting 
caused by too much variance being introduced by the 
additional features. Again, the smallest variance occurs 
with 13 features (average).

Discussion
The research presented, investigated the use of run-time 
opcode traces to discriminate between malicious and 
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benign software. Table 2 summarizes the results in terms 
of performance (Detection, false negative and false posi-
tive rates) versus program run lengths with the corre-
sponding opcode features.

The performance rates are listed in the right-hand 
column (taken from Table  1) and correspond to differ-
ent program run lengths as indicated in the left-most 
columns i.e. 1k-opcodes, 2k-opcodes, 4k-opcodes, 
8k-opcodes, etc. The central columns list the opcodes 
used to achieve these results.

Encryption-based malware often use the xor (opcode) to 
perform their encryption and decryption. Table 2 shows 
that xor frequently appears in the shorter program run 
lengths. This frequent appearance of xor is expected as the 
unpacking/decrypting occurs at the start of a program. 
An exception is that the 4k-opcodes length program does 
not use xor to classify benign and malicious software.

Figure  7 presents opcode categories in terms of their 
ability to detect malware, which is constructed from the 
information presented in Table  2. Figure  7 is calculated 
for each category and then normalised using the total 
area of all the categories. The results show that the flow 

control category is the most effective at 59 % followed by 
Logic and Arithmetic at 31 %. This implies that a program 
structure (Flow Control) is the most significant indicator 
of benign and malicious software followed by the logic 
and arithmetic components of the program, which con-
curs with Bilar [8, 9] findings.

In summary, several observations can be made:

1.	 More is not always best; the optimum number of 
features varies with the program run length, but 
typically (average) 13 opcodes yield the best results. 
As an example, the maximum detection accuracy 
(83.4  %) for the 1k-opcode program run length is 
achieved with 14 features. However, adding more 
features decreases the detection accuracy, which is 
typical of all the program run lengths.

2.	 Table 2 shows that xor is used as an indicator of mal-
ware for shorter program run lengths i,e 1k-opcdes to 
126k-opcodes (excluding 4k-opcode). This is expected 
behaviour as encrypted malware frequently uses xor 
to perform its decryption and is normally exercised in 
the early stages of the program execution.

	 An exception, is the absence of xor in the 4k-opcode 
length, which is not clearly understood beyond the 
fact that the machine learning algorithm did not 
chose it as an optimal feature for this program run 
length i.e. other features performed better for this 
particular program run length.

3.	 While FN is not ideal, many of the program run 
lengths (excluding 2 and 4K-opcodes), are be con-
sidered to be a ‘reasonably low’ FN rate (FN < 5 %). 
The relative short program run lengths of 2 and 

Table 2  Optimum features for malware detection at selected run lengths (K-opcodes)

Fig. 7  Breakdown of malware detection by opcode category
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4k-opcodes have high FN rates of 8.47 and 13.49  % 
respectively. The other program lengths present good 
detection rates of 81–89  %, the FN rates between 
1.58 and 5.87 %.

4.	 The maximum detection accuracy of 86.3 % with the 
lowest FN rate (1.58  %) is obtained for a program 
run length of 32k-opcodes. However, a program 
run length of 1K-opcodes produces a good detec-
tion accuracy of 83.4 %, with a respectable FN rate of 
4.2 %.

5.	 The bottom row (Occur) of Table 2 shows the number 
of times a particular opcode was selected by the clas-
sifier (SVM) as an indicator of malware. For example, 
opcode add was chosen 13 times out of 14 program 
run lengths, whereas, opcode lods was only chosen 
once for the 8k-opcode run length. What is clear, is 
that the opcodes chosen (by the SVM) change rela-
tive to different program run lengths. Our observa-
tions show that shorter program run lengths rely on 
‘logic and arithmetic’ and ‘flow control’, whereas the 
longer program run lengths rely more on ‘flow con-
trol’ opcodes. This infers that the detection of longer 
program run length relies on the complexity of the 
call structure of a program. This is consistent with 
Bilar [9] finding that showed malware having a less 
complex call structure than non-malicious software.

Conclusion
The experimental work carried out in this research inves-
tigated the use of an SVM to detect malware. The fea-
tures used by the SVM were derived from program traces 
obtained from program execution. The findings indicate 
that encrypted malware can be detected using opcodes 
obtained during program execution. The investigation 
continued to establish an optimal program run-length 
for malware detection. The dataset was constructed from 
run-time opcodes and compiled into density histograms 
and then filtered prior to SVM analysis. A feature selection 
cost function was identified and used to steer the SVM for 
optimal performance. The full spectrum of opcodes were 
examined for information, and the search for the optimal 
opcodes was quickly narrowed using an Eigenvector filter.

The findings show that malware detection is possible 
for very short program run lengths of 1k-opcodes that 
produce a detection rate of 83.41  % and a FN rate of 
4.2 %. Using mid-range program run lengths also yields 
a sound detection rate. However, their corresponding FN 
rates deteriorate. The 1k-opcode characteristics provide 
a basis to detect malware during run-time, potentially 
before the program can complete its malicious activity, 
i.e. during their unpacking and deciphering phase.

The research presented, provides an alternative mal-
ware detection approach that is capable of detecting 

obfuscated malware and possible Zero-day attacks. With 
a small group of features and short program run length, a 
real world application could be implemented that detects 
malware with minimal computation, enabling a practical 
real world solution to detect obfuscated malware.
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